Global Large Detector Concept

- Requirement for ILC Detectors
- Basic Design Concept
- GLD Baseline Design
- Overview of Sub-detectors
- Summary

Hwanbae Park Kyungpook Nat'l Univ. **On behalf of GLD concept study group**

Requirement for ILC Detector

Vertexing for flavor tagging, etc

 $\sigma_{ip} = 5\mu m \oplus 10\mu m / p \sin^{3/2}\theta \quad \text{(1/3 of SLD)}$

• Tracking for tagged Higgs, etc $\sigma(1/p) = 5 \times 10^{-5} \text{ /GeV} (1/10 \text{ of LEP})$

• Jet energy for quark, W, Z reconstruction/separation, etc $\sigma_E/E = 0.3/\sqrt{E}$ (1/2 of LEP)

• Hermetic down to 5mrad for missing energy signatures, SUSY

Must also be able to cope with high track densities due to high boost and/or final states with 6+ jets:

- High granularity
- Good pattern recognition
- Good two track resolution

LCWS2006 at Bangalore

Basic Design Concept

Often quoted "Figure of Merit":

$$\frac{BR^2}{\sqrt{\sigma^2 + R_M^2}}$$

 σ : CAL granularity R_{M} : Effective Moliere radius

--> even with B=0 photon energy inside certain distance from charged track scales as ~R⁻²

GLD Concept Study http://ilcphys.kek.jp/gld

1. Large inner radius of ECAL to optimize for PFA

- use fine-segmented W/Scintillator ECAL for cost efficiency
- 2. Large gaseous tracker
 - for excellent $\delta p_t/p_t^2$ and good pattern recognition (efficiency for K^0 , Λ , and new long-lived particles)

3. Moderate B field (3T)

- advantage for low momentum track reconstruction

Current GLD organization

Contact persons: H. Park, H. Yamamoto (Asia) M. Ronan, G. Wilson (America) R. Settles, M. Thomson (Europe)

Executive board members:

- S. Yamashita Detector optimization
- A. Miyamoto Simulation/Reconstruction
- Y. Sugimoto Vertexing
- H.J. Kim Silicon Tracker
- R. Settles TPC tracker
- T. Takeshita Calorimeters
- MDI T. Tauchi
- M. Thomson Space/Bandwidth

Global Large Detector

GLD Baseline Design

IR Design

- Parameters affect detector design
 - crossing angle: 2mrad, 14mrad, 20mrad

background issues by back scattered from BCAL

- L* distance: 4.5m
- detector solenoid field: 3T
- beam pipe radius
- 1st VTX radius
- Time structure of beam → bunch id capability for silicon tracker and calorimeter
- Other studies are also on-going: neutrons, synchrotron radiation, muons, DID, anti-solenoid, etc..

Forward Calorimeter

Forward Calorimeter

Vertex Detector

Vertex Detector

• Flavour tagging requires a precise measurement of the impact parameter

Background rejection

WZ BG

WZ_Sig

W¢ Sig

Wo BG

- Fine pixel option gives high hit density, and could cause tracking inefficiency in the forward region. But it can be overcome by cluster shape
- dW~0 for high p_t signal tracks but large for pair background tracks

Expected Performance

Impact parameter resolution

track generated at $\sim 90^{\circ}$ from IP

Silicon Inner Tracker

Barrel Inner Tracker:

r=9cm (innermost), 30cm(outermost)

half z=18.5cm(innermost), 620cm(outermost)

BIT	sensor area	# sensor of a module (o 1.6)	# module	# sensor	total area
layer 1	50 X 50	4	24	96	240000 MM ²
layer 2	50 X 50	7	48	336	840000 MM ²
layer 3	50 X 50	10	64	640	1600000 MM ²
layer 4	90 X 90	7	24	168	1360800 MM ²

Forward Inner Tracker: 7 layers (3 pixels, 4 strips)

- Maximum active radius : 38cm
- Minimum active radius : 2.4cm
- Maximum Z (active) : 101.5 cm
- Minimum Z (active) : 15.5 cm
- Covering angle : 4.28 ~ 42.09

Silicon Inner Tracker

Material Budget

Main Tracker: TPC

- Background a ~10⁵ hits in TPC (depends on gas/machine) 235 280
- ~10⁹ 3D readout voxels (1.2 MPads+20MHz sampling)
 - \rightarrow 0.5% occupancy
- No problem for pattern recognition/track reconstruction even when taking into account background !

Readout Technology (MPGD)

- Better point and two track resolution
- More robust in high background environment
- Gas Electron Multipliers or Micromegas
- operate in gaseous atmosphere
- avalanche amplification of primary prodcued electrons
- 2 dimensional readout

Micromegas:

- -micromesh sustained by
- 50um pillars
- -amplification occurs between anode and mesh
- -use 1 stages

GEM:

-two copper foils separated by kapton -P:140um, D:60um -amplification occurs in holes -use 2/3 stages

High electric field strength ~ 40-80 kV/cm lon feedback is suppressed : achieved 0.1-1 %

Main Tracker: TPC

• GLD conceptual design achieves the goal of

 $\sigma_{pt}/p_t^2 < 5 \times 10^{-5} / \text{GeV}$

EM Calorimeter

LCWS2006 a along the strip

EMCAL Photon Sensor

HADRON Calorimeter

Muon Chamber

• GLD calorimeter is thick enough (~7 λ) - contain hadron shower - muon chamber is not required to be tail catcher GLD baseline design - 9 or 10 layers of muon detectors RZ views 8.0 interleaved with iron return yoke -scintillator strip with WLS fiber + MPPC 7.65 4.5 $R\Phi$ view 4.0-2.12.0 0.45Iron Yoke Main Tracker 2.3 2.8 4.25 Muon Detector EM Calorimeter Endcap Tracker Hadron Calorimeter Cryostat LCWS2006 at Bangalore

Magnet

Endcap Silicon Tracker (ET)

- Forward tracking is IMPORTANT
 - improve momentum of charged particles which have small number of TPC hits
 - improve matching efficiency between TPC tracks and shower clusters in EM calorimeter (particularly for low momentum tracks)

• ET is located between TPC and endcap EM calorimeter

Momentum Resolution

Momentum Resolution

LCWS2006 at Bangalore

Optional Sub-Detectors

- Performance goal of tracking system: dp_t/p_t²=5x10⁻⁵
- Higgs mass measurement error should b e dominated by beam E spread and beamstrahlung in old beam parameters
- With new beam parameters, better momentum resolution can give better physics output (Tim Barklow's study)
- To get better momentum resolution:
 - sandwich (Si-TPC-Si)
 - club-sandwich (Si-TPC-Si-TPC-Si): possible in GLD
- We will study performance and feasibility of new tracker systems in case the better momentum resolution is required

PFA for GLD

Simple and Robust way

Efficiency and Purity (Energy Weighted)

- Charged Hadron finding Eff = 84.4%, Purity = 91.9%
- Gamma Finding Eff = 85.2%, Purity = 92.2%

PFA Performance Z--> qq @ 91.18GeV

- achieve 30%/sqrt(E)
- similar resolution at higher energy
- optimize detector wrt jet energy resolution

PFA Performance with physics benchmark process

R&D needed

• VTX

- Sensor development and performance demonstration
- wafer thinning and development of the support system

• IT

- DSSD and SSSD with large wafer
- FEE for fast shaping (Bunch ID)
- TPC
 - Prove feasibility of MPGD
 - Readout electronics
 - Large prototype (d>75cm, drift>1m)
- CAL/Muon
 - Large area photon counting with many pixels (>5000)
 - Readout electronics

Summary

- Large detector concept aiming good jet energy resolution
 - moderate magnetic field (~3T)
- relatively lower granularity ECAL based on W/scintillator
- Preliminary study of PFA shows
 - ~40%/sqrt(E) with 4cm x 4cm segmentation is achieved
- Track momentum resolution of 5 x 10⁻⁵/GeV

- achieved with FPCCD+SIT+TPC

- Current baseline design is being prepared for DOD
 - ~200 from ~80 institutes

Detector Outline Document

GLD Detector Outline Document

Version 1.0

GLD Concept Study Group

March 8, 2006

 Baseline design of GLD has been shown, but current GLD baseline design is not really optimized.

• More simulation study, sub-detector R&D effort, and new ideas are necessary and welcome.