Looking for Split Supersymmetry in Higgs Signals

Sudhir K Gupta
Collaborators: Biswarup Mukhopadhyaya and Santosh K Rai

Department of Physics
Harish - Chandra Research Institute
Allahabad -211 019 (India).

Outline

- Split Supersymmetry

Outline

- Split Supersymmetry
- Higgs Boson in Split Supersymmetry

Outline

- Split Supersymmetry
- Higgs Boson in Split Supersymmetry
- Di Photon Production

Outline

- Split Supersymmetry
- Higgs Boson in Split Supersymmetry
- Di Photon Production
- Conclusion

Split SUSY

The proposal has its origin in the naturalness problem.

Split SUSY

The proposal has its origin in the naturalness problem. Higgs boson mass is quadratically sensitive to the UV cut-off of Standard Model.

Split SUSY

The proposal has its origin in the naturalness problem. Higgs boson mass is quadratically sensitive to the UV cut-off of Standard Model.

SUSY broken within TeV helps to avoid fine-tuning of the Higgs mass.

Split SUSY

The proposal has its origin in the naturalness problem. Higgs boson mass is quadratically sensitive to the UV cut-off of Standard Model.

SUSY broken within TeV helps to avoid fine-tuning of the Higgs mass.

A broken SUSY leads to a large cosmological constant, Λ, the escape from which is fine-tuning of a more severe kind (around 60 places or so).

This is motivated by 'the landscape scenario' in string theory (where different choices of the string vacua give rise to a very large number of possible universes), statistically a small Λ can be there in some cases.

Features of The Model

This is motivated by 'the landscape scenario' in string theory (where different choices of the string vacua give rise to a very large number of possible universes), statistically a small Λ can be there in some cases.
Frees the SUSY breaking scale from being $\leq \mathrm{TeV}$.

Features of The Model

This is motivated by 'the landscape scenario' in string theory (where different choices of the string vacua give rise to a very large number of possible universes), statistically a small Λ can be there in some cases.
Frees the SUSY breaking scale from being $\leq \mathrm{TeV}$.
All supersymmetric scalars are very heavy.

Features of The Model

This is motivated by 'the landscape scenario' in string theory (where different choices of the string vacua give rise to a very large number of possible universes), statistically a small Λ can be there in some cases.
Frees the SUSY breaking scale from being $\leq \mathrm{TeV}$.
All supersymmetric scalars are very heavy.
Gauginos and Higgsinos can be within the TeV scale.

Due to large scalar masses FCNC will be highly suppressed.

Due to large scalar masses FCNC will be highly suppressed.
Gluinos can be long-lived since their decays are mediated by the squarks.

Due to large scalar masses FCNC will be highly suppressed.
Gluinos can be long-lived since their decays are mediated by the squarks.
Lightest neutralino (LSP) is in the right mass range to become a dark matter candidate.

Due to large scalar masses FCNC will be highly suppressed.
Gluinos can be long-lived since their decays are mediated by the squarks.
Lightest neutralino (LSP) is in the right mass range to become a dark matter candidate.

The unification of the coupling constants can still remain unaffected.

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}= & m^{2} H^{\dagger} H-\frac{\lambda}{2}\left(H^{\dagger} H\right)^{2} \\
& -\left[h_{i j}^{u} \bar{q}_{j} u_{i} \epsilon H^{*}+h_{i j}^{d} \bar{q}_{j} d_{i} H+h_{i j}^{e} \bar{\ell}_{j} e_{i} H\right. \\
& +\frac{M_{3}}{2} \tilde{g}^{A} \tilde{g}^{A}+\frac{M_{2}}{2} \tilde{W}^{a} \tilde{W}^{a}+\frac{M_{1}}{2} \tilde{B} \tilde{B}+\mu \tilde{H}_{u}^{T} \epsilon \tilde{H}_{d} \\
& \left.+\frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u} \sigma^{a} \tilde{W}^{a}+\tilde{g}_{u}^{\prime} \tilde{B}\right) \tilde{H}_{u}+\frac{H^{T} \epsilon}{\sqrt{2}}\left(-\tilde{g}_{d} \sigma^{a} \tilde{W}^{a}+\tilde{g}_{d}^{\prime} \tilde{B}\right) \tilde{H}_{d}+\text { h.c. }\right]
\end{aligned}
$$

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}= m^{2} H^{\dagger} H-\frac{\lambda}{2}\left(H^{\dagger} H\right)^{2} \\
&-\left[h_{i j}^{u} \bar{q}_{j} u_{i} \epsilon H^{*}+h_{i j}^{d} \bar{q}_{j} d_{i} H+h_{i j}^{e} \bar{\ell}_{j} e_{i} H\right. \\
&+\frac{M_{3}}{2} \tilde{g}^{A} \tilde{g}^{A}+\frac{M_{2}}{2} \tilde{W}^{a} \tilde{W}^{a}+\frac{M_{1}}{2} \tilde{B} \tilde{B}+\mu \tilde{H}_{u}^{T} \epsilon \tilde{H}_{d} \\
&\left.+\frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u} \sigma^{a} \tilde{W}^{a}+\tilde{g}_{u}^{\prime} \tilde{B}\right) \tilde{H}_{u}+\frac{H^{T} \epsilon}{\sqrt{2}}\left(-\tilde{g}_{d} \sigma^{a} \tilde{W}^{a}+\tilde{g}_{d}^{\prime} \tilde{B}\right) \tilde{H}_{d}+h . c .\right] \\
& \lambda\left(m_{s}\right)= \frac{\left[g^{2}\left(m_{s}\right)+g^{\prime 2}\left(m_{s}\right)\right]}{4} \cos ^{2} 2 \beta \\
& h_{i j}^{d, e}\left(m_{s}\right)=Y_{i j}^{d, e *}\left(m_{s}\right) \cos \beta \\
& h_{i j}^{u}\left(m_{s}\right)=Y_{i j}^{u *}\left(m_{s}\right) \sin \beta, \tilde{g}_{d}\left(m_{s}\right)=g\left(m_{s}\right) \cos \beta \\
& \tilde{g}_{u}\left(m_{s}\right)=g\left(m_{s}\right) \sin \beta, \tilde{g}_{d}^{\prime}\left(m_{s}\right)=g^{\prime}\left(m_{s}\right) \cos \beta \\
& \tilde{g}_{u}^{\prime}\left(m_{s}\right)=g^{\prime}\left(m_{s}\right) \sin \beta,
\end{aligned}
$$

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}=m^{2} H^{\dagger} H-\frac{\lambda}{2}\left(H^{\dagger} H\right)^{2} \\
& -\left[h_{i j}^{u} \bar{q}_{j} u_{i} \epsilon H^{*}+h_{i j}^{d} \bar{q}_{j} d_{i} H+h_{i j}^{e} \bar{\ell}_{j} e_{i} H\right. \\
& +\frac{M_{3}}{2} \tilde{g}^{A} \tilde{g}^{A}+\frac{M_{2}}{2} \tilde{W}^{a} \tilde{W}^{a}+\frac{M_{1}}{2} \tilde{B} \tilde{B}+\mu \tilde{H}_{u}^{T} \epsilon \tilde{H}_{d} \\
& \left.+\frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u} \sigma^{a} \tilde{W}^{a}+\tilde{g}_{u}^{\prime} \tilde{B}\right) \tilde{H}_{u}+\frac{H^{T} \epsilon}{\sqrt{2}}\left(-\tilde{g}_{d} \sigma^{a} \tilde{W}^{a}+\tilde{g}_{d}^{\prime} \tilde{B}\right) \tilde{H}_{d}+h . c .\right] \\
& \lambda\left(m_{s}\right)=\frac{\left[g^{2}\left(m_{s}\right)+g^{2}\left(m_{s}\right)\right]}{4} \cos ^{2} 2 \beta \\
& h_{i j}^{u}\left(m_{s}\right)=Y_{i j}^{u *}\left(m_{s}\right) \sin \beta, \quad h_{i j}^{d, e}\left(m_{s}\right)=Y_{i j}^{d, e *}\left(m_{s}\right) \cos \beta, \\
& \tilde{g}_{u}\left(m_{s}\right)=g\left(m_{s}\right) \sin \beta, \quad \tilde{g}_{d}\left(m_{s}\right)=g\left(m_{s}\right) \cos \beta \\
& \tilde{g}_{u}^{\prime}\left(m_{s}\right)=g^{\prime}\left(m_{s}\right) \sin \beta, \quad \quad \tilde{g}_{d}^{\prime}\left(m_{s}\right)=g^{\prime}\left(m_{s}\right) \cos \beta
\end{aligned}
$$

Matching Conditions:

Energy $<m_{S} \rightarrow S M$ with one Higgs + Gauginos + Higgsinos.
Energy $>m_{S} \rightarrow$ MSSM with all that comes with it.

Matching Conditions:

Energy $<m_{S} \rightarrow S M$ with one Higgs + Gauginos + Higgsinos.
Energy $>m_{S} \rightarrow$ MSSM with all that comes with it.
Matching conditions at m_{S} gives the low energy Lagrangian.

Higgs Boson in Split SUSY

In split SUSY the lightest Higgs boson has the same coupling with the Standard Model (SM) particles as that of the SM Higgs boson.
Mass of this Higgs lies between $120-170 \mathrm{GeV}$.

Higgs Boson in Split SUSY

In split SUSY the lightest Higgs boson has the same coupling with the Standard Model (SM) particles as that of the SM Higgs boson.
Mass of this Higgs lies between $120-170 \mathrm{GeV}$.
Que: Can we distinguish it with the SM signals at the future colliders?

Higgs ...

At tree-level, it is very difficult because such processes are unlikely to produce SUSY particles from decay of the Higgs.

At tree-level, it is very difficult because such processes are unlikely to produce SUSY particles from decay of the Higgs. We need to look at the loop-induced decays of Higgs boson in which SUSY particles may appear in the loops.

Di Photon Production

The most prominent decay mode in the above mass range Di photon production.

Di Photon Production

The most prominent decay mode in the above mass range Di photon production.
Additional contribution comes due to Chargino loops.

Di Photon ...

Di Photon ...

Di Photon ...

$$
\Gamma(h \rightarrow \gamma \gamma)=\frac{G_{F}}{128 \sqrt{2}} \frac{\alpha^{2} m_{h}^{3}}{\pi^{3}}\left|\sum_{i} A_{i}\right|^{2}
$$

i stands for different particles in the loop.

Di Photon ...

The rate (LO) for the process (via gluon fusion) $p p \rightarrow h+X \longrightarrow \gamma \gamma$

$$
R=\frac{\pi^{2}}{8 m_{h} S} \frac{\Gamma_{h \rightarrow 2 g} \Gamma_{h \rightarrow 2 \gamma}}{\Gamma_{t o t}} \int_{\tau}^{1} d \zeta \frac{1}{\zeta} g\left(\zeta, m_{h}^{2}\right) g\left(\frac{\tau}{\zeta}, m_{h}^{2}\right)
$$

$\tau=m_{h}^{2} / S$ and g's are the gluon distribution function.

Di Photon ...

The rate (LO) for the process (via gluon fusion) $p p \rightarrow h+X \longrightarrow \gamma \gamma$

$$
R=\frac{\pi^{2}}{8 m_{h} S} \frac{\Gamma_{h \rightarrow 2 g} \Gamma_{h \rightarrow 2 \gamma}}{\Gamma_{t o t}} \int_{\tau}^{1} d \zeta \frac{1}{\zeta} g\left(\zeta, m_{h}^{2}\right) g\left(\frac{\tau}{\zeta}, m_{h}^{2}\right)
$$

$\tau=m_{h}^{2} / S$ and g's are the gluon distribution function.
The total uncertainty in $R^{S M}$ can be expressed as

$$
\begin{gathered}
\left(\frac{\delta R^{S M}}{R^{S M}}\right)^{2}=\left(\frac{\delta R^{S M}}{R^{S M}}\right)_{t h}^{2}+\left(\frac{\delta R^{S M}}{R^{S M}}\right)_{\exp }^{2} \\
\left(\frac{\delta R^{S M}}{R^{S M}}\right)_{t h}^{2}=\frac{1}{R^{S M^{2}}} \sum_{i} \sigma_{R_{i}}^{2}
\end{gathered}
$$

Di Photon ...

The rate (LO) for the process (via gluon fusion) $p p \rightarrow h+X \longrightarrow \gamma \gamma$

$$
R=\frac{\pi^{2}}{8 m_{h} S} \frac{\Gamma_{h \rightarrow 2 g} \Gamma_{h \rightarrow 2 \gamma}}{\Gamma_{t o t}} \int_{\tau}^{1} d \zeta \frac{1}{\zeta} g\left(\zeta, m_{h}^{2}\right) g\left(\frac{\tau}{\zeta}, m_{h}^{2}\right)
$$

$\tau=m_{h}^{2} / S$ and g's are the gluon distribution function.
The total uncertainty in $R^{S M}$ can be expressed as

$$
\begin{gathered}
\left(\frac{\delta R^{S M}}{R^{S M}}\right)^{2}=\left(\frac{\delta R^{S M}}{R^{S M}}\right)_{t h}^{2}+\left(\frac{\delta R^{S M}}{R^{S M}}\right)_{\exp }^{2} \\
\left(\frac{\delta R^{S M}}{R^{S M}}\right)_{t h}^{2}=\frac{1}{R^{S M^{2}}} \sum_{i} \sigma_{R_{i}}^{2}
\end{gathered}
$$

$\sigma_{R_{i}}$ stands for the spread in the prediction of $R^{S M}$ due to uncertainty in the $i^{t h}$ parameter relevant for the calculation.

A NNLO level Monte Carlo simulation has been performed using MRST PDF and HDECAY3.0.

Proper experimental cuts and efficiency factor has been used to get the effective rates.

Parameter	Central Value	Present Uncertainty	LHC Uncertainty(projected)
m_{h}	$120 .-150$.	-	0.2
m_{W}	80.425	.034	.015
m_{t}	172.7	2.9	1.5
m_{b}	4.62	.15	-
m_{c}	1.42	.1	-
m_{τ}	1.777	.0003	-
α_{s}	0.1187	0.002	-

Uncertainties

Parameter	Central Value	Present Uncertainty	LHC Uncertainty(projected)
m_{h}	$120 .-150$.	-	0.2
m_{W}	80.425	.034	.015
m_{t}	172.7	2.9	1.5
m_{b}	4.62	.15	-
m_{c}	1.42	.1	-
m_{τ}	1.777	.0003	-
α_{s}	0.1187	0.002	-

Total Uncertainty in Standard Model rate		
Higgs mass (GeV)	PDF + Scale Uncertainty $=15 \%$	PDF + Scale Uncertainty $=10 \%$
120.0	19.2%	15.6%
150.0	19.4%	15.8%

Theoretical uncertainty has been compounded with the experimental uncertainty to give the total uncertainty in the SM rate, $\delta R_{S M}$.

Theoretical uncertainty has been compounded with the experimental uncertainty to give the total uncertainty in the SM rate, $\delta R_{S M}$.
$\delta R_{S M}$, at different σ levels has been compared with the deviation in central values of rates $\left(R-R_{S M}\right)$ due to additional split SUSY contribution for different values of SUSY parameters (M_{2}, μ and $\tan \beta$).

Theoretical uncertainty has been compounded with the experimental uncertainty to give the total uncertainty in the SM rate, $\delta R_{S M}$.
$\delta R_{S M}$, at different σ levels has been compared with the deviation in central values of rates ($R-R_{S M}$) due to additional split SUSY contribution for different values of SUSY parameters (M_{2}, μ and $\tan \beta$).
Two sets (for $m_{h}=120,150 \mathrm{GeV}$) of plots has been generated for $\tan \beta=1.0,1.5$ for allowed values of M_{2} and μ consistent with the LEP bounds on the lightest Chargino mass.
Note: Lower bound on $\tan \beta$ in this scenario is .57 .

Contd...

Allowed parameter space at various σ levels due to present uncertainty.

Contd ...

Allowed parameter space at various σ levels due to present uncertainty.

Contd...

Allowed parameter space at various σ levels due to projected uncertainty.

Conclusion

- Difficult to separate the two signals at higher σ levels.
- Difficult to separate the two signals at higher σ levels.
- In large $\tan \beta$ regions the distinction is impossible.

Conclusion

- Difficult to separate the two signals at higher σ levels.
- In large $\tan \beta$ regions the distinction is impossible.
- A Linear Collider (LC) is needed for studying such signals because there the initial state will be hadron less.

Conclusion

- Difficult to separate the two signals at higher σ levels.
- In large $\tan \beta$ regions the distinction is impossible.
- A Linear Collider (LC) is needed for studying such signals because there the initial state will be hadron less.

THANK YOU!

