Looking for Split Supersymmetry in Higgs Signals

Sudhir K Gupta

Collaborators: Biswarup Mukhopadhyaya and Santosh K Rai

Department of Physics Harish - Chandra Research Institute Allahabad -211 019 (India).

LCWS'06, IISC, Banglore - p.1/20

Split Supersymmetry

- Split Supersymmetry
- Higgs Boson in Split Supersymmetry

- Split Supersymmetry
- Higgs Boson in Split Supersymmetry
- Di Photon Production

- Split Supersymmetry
- Higgs Boson in Split Supersymmetry
- Di Photon Production
- Conclusion

The proposal has its origin in the naturalness problem.

The proposal has its origin in the naturalness problem. Higgs boson mass is quadratically sensitive to the UV cut-off of Standard Model.

The proposal has its origin in the naturalness problem. Higgs boson mass is quadratically sensitive to the UV cut-off of Standard Model.

SUSY broken within TeV helps to avoid fine-tuning of the Higgs mass.

The proposal has its origin in the naturalness problem. Higgs boson mass is quadratically sensitive to the UV cut-off of Standard Model.

SUSY broken within TeV helps to avoid fine-tuning of the Higgs mass.

A broken SUSY leads to a large cosmological constant, Λ , the escape from which is fine-tuning of a more severe kind (around 60 places or so).

Frees the SUSY breaking scale from being \leq TeV.

Frees the SUSY breaking scale from being \leq TeV.

All supersymmetric scalars are very heavy.

Frees the SUSY breaking scale from being \leq TeV.

All supersymmetric scalars are very heavy.

Gauginos and Higgsinos can be within the TeV scale.

Gluinos can be long-lived since their decays are mediated by the squarks.

Gluinos can be long-lived since their decays are mediated by the squarks.

Lightest neutralino (LSP) is in the right mass range to become a dark matter candidate.

Gluinos can be long-lived since their decays are mediated by the squarks.

Lightest neutralino (LSP) is in the right mass range to become a dark matter candidate.

The unification of the coupling constants can still remain unaffected.

$$\mathcal{L} = m^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} \\ - \left[h_{ij}^{u}\bar{q}_{j}u_{i}\epsilon H^{*} + h_{ij}^{d}\bar{q}_{j}d_{i}H + h_{ij}^{e}\bar{\ell}_{j}e_{i}H \right. \\ \left. + \frac{M_{3}}{2}\tilde{g}^{A}\tilde{g}^{A} + \frac{M_{2}}{2}\tilde{W}^{a}\tilde{W}^{a} + \frac{M_{1}}{2}\tilde{B}\tilde{B} + \mu\tilde{H}_{u}^{T}\epsilon\tilde{H}_{d} \right. \\ \left. + \frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{u}'\tilde{B}\right)\tilde{H}_{u} + \frac{H^{T}\epsilon}{\sqrt{2}}\left(-\tilde{g}_{d}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{d}'\tilde{B}\right)\tilde{H}_{d} + h.c. \right]$$

$$\mathcal{L} = m^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} \\ - \left[h_{ij}^{u}\bar{q}_{j}u_{i}\epsilon H^{*} + h_{ij}^{d}\bar{q}_{j}d_{i}H + h_{ij}^{e}\bar{\ell}_{j}e_{i}H \right. \\ \left. + \frac{M_{3}}{2}\tilde{g}^{A}\tilde{g}^{A} + \frac{M_{2}}{2}\tilde{W}^{a}\tilde{W}^{a} + \frac{M_{1}}{2}\tilde{B}\tilde{B} + \mu\tilde{H}_{u}^{T}\epsilon\tilde{H}_{d} \right. \\ \left. + \frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{u}'\tilde{B}\right)\tilde{H}_{u} + \frac{H^{T}\epsilon}{\sqrt{2}}\left(-\tilde{g}_{d}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{d}'\tilde{B}\right)\tilde{H}_{d} + h.c. \right]$$

$$\lambda(m_s) = \frac{\left[g^2(m_s) + g'^2(m_s)\right]}{4} \cos^2 2\beta$$

$$h_{ij}^u(m_s) = Y_{ij}^{u*}(m_s) \sin\beta, \qquad h_{ij}^{d,e}(m_s) = Y_{ij}^{d,e*}(m_s) \cos\beta,$$

$$\tilde{g}_u(m_s) = g(m_s) \sin\beta, \qquad \tilde{g}_d(m_s) = g(m_s) \cos\beta$$

$$\tilde{g}_u'(m_s) = g'(m_s) \sin\beta, \qquad \tilde{g}_d'(m_s) = g'(m_s) \cos\beta$$

$$\mathcal{L} = m^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} \\ - \left[h_{ij}^{u}\bar{q}_{j}u_{i}\epsilon H^{*} + h_{ij}^{d}\bar{q}_{j}d_{i}H + h_{ij}^{e}\bar{\ell}_{j}e_{i}H \right. \\ \left. + \frac{M_{3}}{2}\tilde{g}^{A}\tilde{g}^{A} + \frac{M_{2}}{2}\tilde{W}^{a}\tilde{W}^{a} + \frac{M_{1}}{2}\tilde{B}\tilde{B} + \mu\tilde{H}_{u}^{T}\epsilon\tilde{H}_{d} \right. \\ \left. + \frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{u}'\tilde{B}\right)\tilde{H}_{u} + \frac{H^{T}\epsilon}{\sqrt{2}}\left(-\tilde{g}_{d}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{d}'\tilde{B}\right)\tilde{H}_{d} + h.c. \right]$$

$$\lambda(m_s) = \frac{\left[g^2(m_s) + g'^2(m_s)\right]}{4} \cos^2 2\beta$$

$$h_{ij}^u(m_s) = Y_{ij}^{u*}(m_s) \sin\beta, \qquad h_{ij}^{d,e}(m_s) = Y_{ij}^{d,e*}(m_s) \cos\beta,$$

$$\tilde{g}_u(m_s) = g(m_s) \sin\beta, \qquad \tilde{g}_d(m_s) = g(m_s) \cos\beta$$

$$\tilde{g}_u'(m_s) = g'(m_s) \sin\beta, \qquad \tilde{g}_d'(m_s) = g'(m_s) \cos\beta$$

 m_S is SUSY breaking scale.

Matching Conditions:

 $Energy < m_S \rightarrow SM$ with one Higgs + Gauginos + Higgsinos.

 $Energy > m_S \rightarrow MSSM$ with all that comes with it.

Matching Conditions:

 $Energy < m_S \rightarrow SM$ with one Higgs + Gauginos + Higgsinos.

 $Energy > m_S \rightarrow MSSM$ with all that comes with it.

Matching conditions at m_S gives the low energy Lagrangian.

Higgs Boson in Split SUSY

In split SUSY the lightest Higgs boson has the same coupling with the Standard Model (SM) particles as that of the SM Higgs boson.

Mass of this Higgs lies between 120 - 170 GeV.

Higgs Boson in Split SUSY

In split SUSY the lightest Higgs boson has the same coupling with the Standard Model (SM) particles as that of the SM Higgs boson.

Mass of this Higgs lies between 120 - 170 GeV.

Que: Can we distinguish it with the SM signals at the future colliders?

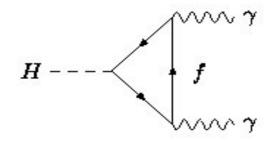
At tree-level, it is very difficult because such processes are unlikely to produce SUSY particles from decay of the Higgs.

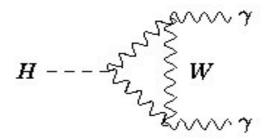
Higgs ...

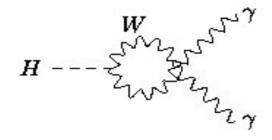
At tree-level, it is very difficult because such processes are unlikely to produce SUSY particles from decay of the Higgs. We need to look at the loop-induced decays of Higgs boson in which SUSY particles may appear in the loops.

Di Photon Production

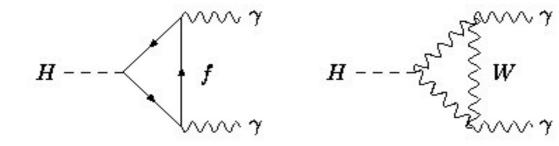
The most prominent decay mode in the above mass range Di photon production.

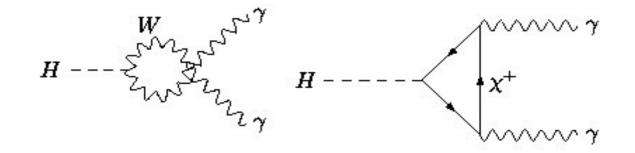


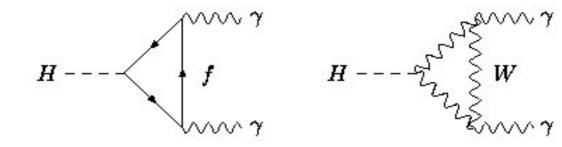

Di Photon Production

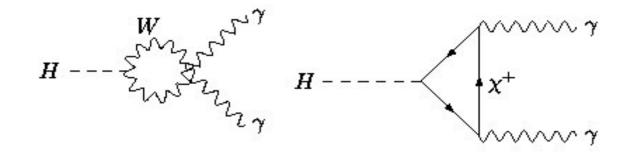

The most prominent decay mode in the above mass range Di photon production.

Additional contribution comes due to Chargino loops.






LCWS'06, IISC, Banglore – p.11/20



LCWS'06, IISC, Banglore – p.12/20

$$\Gamma(h \to \gamma \gamma) = \frac{G_F}{128\sqrt{2}} \frac{\alpha^2 m_h^3}{\pi^3} \left| \sum_i A_i \right|^2$$

i stands for different particles in the loop.

LCWS'06, IISC, Banglore – p.12/20

The rate (LO) for the process (via gluon fusion) $pp \rightarrow h + X \longrightarrow \gamma \gamma$

$$R = \frac{\pi^2}{8m_h S} \frac{\Gamma_{h \to 2g} \Gamma_{h \to 2\gamma}}{\Gamma_{tot}} \int_{\tau}^{1} d\zeta \frac{1}{\zeta} g\left(\zeta, m_h^2\right) g\left(\frac{\tau}{\zeta}, m_h^2\right)$$

 $au=m_h^2/S$ and g's are the gluon distribution function.

The rate (LO) for the process (via gluon fusion) $pp \rightarrow h \ + \ X \longrightarrow \gamma \gamma$

$$R = \frac{\pi^2}{8m_h S} \frac{\Gamma_{h \to 2g} \Gamma_{h \to 2\gamma}}{\Gamma_{tot}} \int_{\tau}^{1} d\zeta \frac{1}{\zeta} g\left(\zeta, m_h^2\right) g\left(\frac{\tau}{\zeta}, m_h^2\right)$$

 $au=m_h^2/S$ and g's are the gluon distribution function. The total uncertainty in R^{SM} can be expressed as

$$\left(\frac{\delta R^{SM}}{R^{SM}}\right)^2 = \left(\frac{\delta R^{SM}}{R^{SM}}\right)^2_{th} + \left(\frac{\delta R^{SM}}{R^{SM}}\right)^2_{exp}$$

$$\left(\frac{\delta R^{SM}}{R^{SM}}\right)_{th}^2 = \frac{1}{R^{SM^2}} \sum_i \sigma_{R_i}^2$$

The rate (LO) for the process (via gluon fusion) $pp \rightarrow h \ + \ X \longrightarrow \gamma \gamma$

$$R = \frac{\pi^2}{8m_h S} \frac{\Gamma_{h \to 2g} \Gamma_{h \to 2\gamma}}{\Gamma_{tot}} \int_{\tau}^{1} d\zeta \frac{1}{\zeta} g\left(\zeta, m_h^2\right) g\left(\frac{\tau}{\zeta}, m_h^2\right)$$

 $au=m_h^2/S$ and g's are the gluon distribution function. The total uncertainty in R^{SM} can be expressed as

$$\left(\frac{\delta R^{SM}}{R^{SM}}\right)^2 = \left(\frac{\delta R^{SM}}{R^{SM}}\right)^2_{th} + \left(\frac{\delta R^{SM}}{R^{SM}}\right)^2_{exp}$$

$$\left(\frac{\delta R^{SM}}{R^{SM}}\right)_{th}^2 = \frac{1}{R^{SM^2}} \sum_i \sigma_{R_i}^2$$

 σ_{R_i} stands for the spread in the prediction of R^{SM} due to uncertainty in the i^{th} parameter relevant for the calculation.

A NNLO level Monte Carlo simulation has been performed using MRST PDF and HDECAY3.0.

Proper experimental cuts and efficiency factor has been used to get the effective rates.

Parameter	Central Value	Present Uncertainty	LHC Uncertainty(projected)
m_h	120 150.	_	0.2
m_W	80.425	.034	.015
m_t	172.7	2.9	1.5
m_b	4.62	.15	—
m_c	1.42	.1	—
$m_{ au}$	1.777	.0003	_
$lpha_s$	0.1187	0.002	—

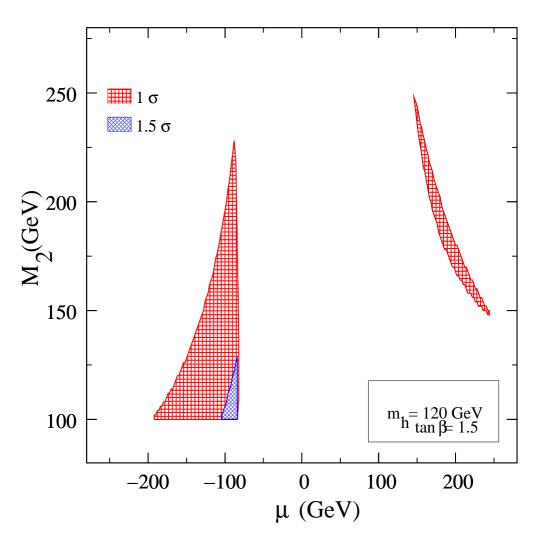
Parameter	Central Value	Present Uncertainty	LHC Uncertainty(projected)
m_h	120 150.	_	0.2
m_W	80.425	.034	.015
m_t	172.7	2.9	1.5
m_b	4.62	.15	—
m_c	1.42	.1	—
$m_{ au}$	1.777	.0003	—
$lpha_s$	0.1187	0.002	

Total Uncertainty in Standard Model rate				
Higgs mass (GeV)	PDF + Scale Uncertainty= 15%	PDF + Scale Uncertainty= 10%		
120.0	19.2%	15.6%		
150.0	19.4%	15.8%		

Theoretical uncertainty has been compounded with the experimental uncertainty to give the total uncertainty in the SM rate, δR_{SM} .

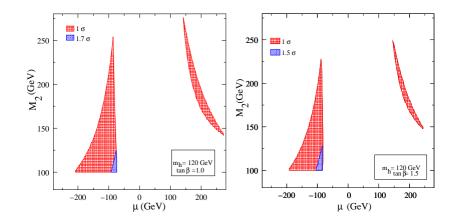
Theoretical uncertainty has been compounded with the experimental uncertainty to give the total uncertainty in the SM rate, δR_{SM} .

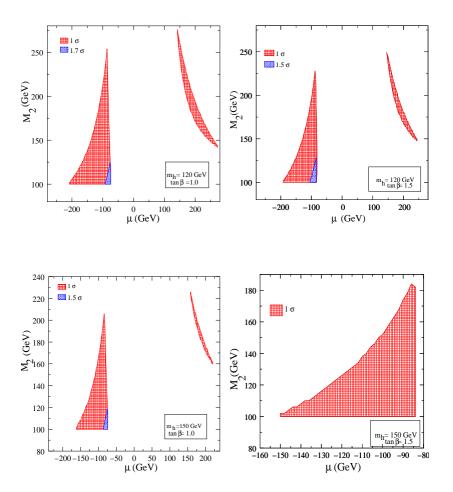
 δR_{SM} , at different σ levels has been compared with the deviation in central values of rates $(R - R_{SM})$ due to additional split SUSY contribution for different values of SUSY parameters $(M_2, \mu \text{ and } tan\beta)$.


Theoretical uncertainty has been compounded with the experimental uncertainty to give the total uncertainty in the SM rate, δR_{SM} .

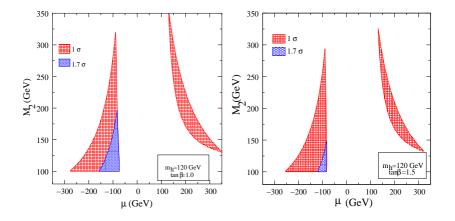
 δR_{SM} , at different σ levels has been compared with the deviation in central values of rates $(R - R_{SM})$ due to additional split SUSY contribution for different values of SUSY parameters (M_2 , μ and $tan\beta$).

Two sets (for $m_h = 120, 150 GeV$) of plots has been generated for $tan\beta = 1.0, 1.5$ for allowed values of M_2 and μ consistent with the LEP bounds on the lightest Chargino mass.

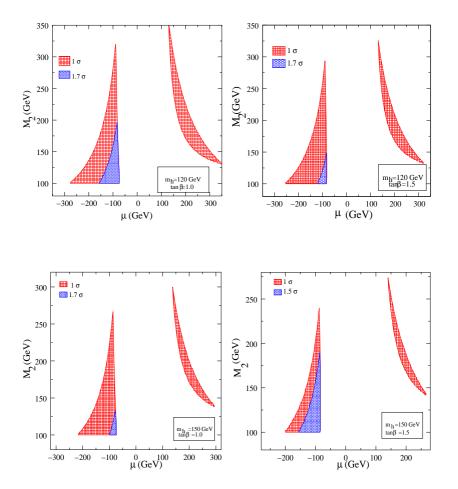

Note: Lower bound on $tan\beta$ in this scenario is .57.



Allowed parameter space at various σ levels due to present uncertainty.


LCWS'06, IISC, Banglore – p.18/20

Allowed parameter space at various σ levels due to present uncertainty.



LCWS'06, IISC, Banglore - p.18/20

LCWS'06, IISC, Banglore – p.19/20

Allowed parameter space at various σ levels due to projected uncertainty.

Difficult to separate the two signals at higher σ levels.

- Difficult to separate the two signals at higher σ levels.
- In large $tan\beta$ regions the distinction is impossible.

- Difficult to separate the two signals at higher σ levels.
- In large $tan\beta$ regions the distinction is impossible.
- A Linear Collider (LC) is needed for studying such signals because there the initial state will be hadron less.

- Difficult to separate the two signals at higher σ levels.
- In large $tan\beta$ regions the distinction is impossible.
- A Linear Collider (LC) is needed for studying such signals because there the initial state will be hadron less.

THANK YOU!

