$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole CHEP, IISc, Bangalore, India.

March 11, 2006

LCWS06: International Linear Collider Workshop.
\checkmark What gives the energy dependence of total cross-sections?
\checkmark A look at $p p, p \bar{p}, \gamma p, \gamma \gamma \rightarrow$ hadrons
\checkmark A QCD based description of the decrease and the increase of total cross-sections through Soft Gluon Summation (Bloch-Nordsieck Model) and Mini-jets

- Predictions for hadronic backgrounds at future linear colliders.
With G. Pancheri and A. Corsetti, Eikonal Minijet Model for $p p, \gamma p$ and $\gamma \gamma$. PLB 435 (1998) 441, Eur.Phys.J.C19:129-136,2001 1/x in $\sigma_{j e t}$ drives the rise.
With A. de Roeck, A. Grau and G. Pancheri, Testing of models at future Linear colliders LC-TH-2001-030, and hep-ph/0305071 JHEP 0306, 061, pp. 1-15
With A. Grau, G. Pancheri and Y. N. Srivastava Soft Gluon Resummation tames the rise. Phys. Rev. D 72, 076001, hep-ph/0408355.
With R. Hegde, A. Grau, G. Pancheri and Y. Srivastava hep-ph/yymmnnn, Proceedings of Les Houch Workshop 2005.

March 11, 2006
LCWS06: International Linear Collider Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole
(page 1) CHEP, IISc, Bangalore, India.

Some associated work:

M. Drees and R.M. Godbole, Zeit. Phys. C59 (1993) 591. Hadronic backgrounds due to photon structure at Linear Colldiers
M. Block, E. Gregores, F. Halzen and G. Pancheri for the Aspen Model Phys.Rev.D60 (1999) 054024 FACTORIZATION
A. Grau, G. Pancheri and Y. N. Srivastava for the Bloch-Nordsieck Model PR D60 (1999) 114020 $\alpha_{s}\left(k_{t} \rightarrow 0\right)$ tames the rise resummation

Rohini, Godbole CHEP, IISc, Bangalore, India.

- Predictions for total cross-sections within unified models, embedding QCD processes, using information on proton and photon structure functions as well as those from the model independent extrapolations to higher energies.
\checkmark Taming of the high energy rise with the soft gluon resummation in the eikonalised minijet model (EMM).
\checkmark Variability of model predictions due to changes in the soft parameters of the $p p / p \bar{p}$ case. resummation

Use perturbative QCD as well as measured str. fns. of p and γ. I.e. in terms of quarks and gluons in p and γ.
Basic philosophy:
Try to explain the rise and the initial fall in terms of partons in the colliding hadrons using experimentally determined parton densities and basic QCD interactions among partons.

Increasing beam energy \Rightarrow increase in $\#$ and energy of collding partons.
$\sigma_{j e t}=\sigma(A+B \rightarrow j e t+j e t+X)$
calculated in pQCD rises with increasing \sqrt{s}.
Energy rise in $\sigma_{t o t}$ driven by the rise of $\sigma_{j e t}$.
Minijet Model Halzen and Cline (1985)

March 11, 2006
LCWS06: International Linear Collider Workshop.

```
\gamma total cross-sections
    and the soft gluon (page 4) resummation
```

Rohini, Godbole

CHEP, IISc, Bangalore, India.
(page 4)

$$
\begin{gathered}
\sigma_{j e t}=\int_{p_{t} \min } \frac{d^{2} \sigma_{j e t}}{d^{2} \vec{p}_{t}} d^{2}{\overrightarrow{p_{t}}}^{=} \\
=\sum_{\text {partons }} \int_{p_{t} \min } d^{2} \vec{p}_{t} \int f\left(x_{1}\right) d x_{1} \int f\left(x_{2}\right) d x_{2} \frac{d^{2} \sigma^{p a r t o n s}}{d^{2} \vec{p}_{t}}
\end{gathered}
$$

Minijet cross-sections dominated by gluons and similar for $p p, \gamma p$ and $\gamma \gamma$ at high energies when appropriately scaled by $1 / \alpha_{e m}$
$\sigma_{j e t}$ depend on the densities and very dramatically on $p_{\text {tmin }}$ the transverse momentum cut-off

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
(page 5) resummation

Rohini, Godbole
CHEP, IISc, Bangalore, India.

- $\sigma_{j e t}$ rises with s as a power in violation Frossiart Bound too fast towards $\sigma_{t o t}$.
- Unitarization essential. Done using eikonal formalism
- The steep rise of $\sigma_{j e t}$ with s is NOT reflected in the energy rise of $\sigma_{t o t}, \sigma_{i n e l}$.
With increasing energy the probability of multiple parton scattering (MPS) in a given hard scatter increases

Transverse Overlap of the hadrons
$\sigma_{A B}^{j e t}(s)=<n_{\text {pair }}^{j e t}>(s) \sigma_{A B}^{\text {inel }}(s)$
Rising MPS \Rightarrow rising jet pair multiplicity
Need to calculate the s dependence of $\left\langle n_{\text {pair }}^{j e t}\right\rangle$.
Perhaps need to go beyond pQCD.
s dependence related to that of the MPS probability.
This in turn decided by the overlap of the partons in the transverse plane.
$A_{A B}(\beta)=\int d^{2} b_{1} \rho_{A}\left(\overrightarrow{b_{1}}\right) \rho_{B}\left(\vec{\beta}-\overrightarrow{b_{1}}\right)$
Governing quantity \# of collisions:

$$
n(b, s)=A_{A B}(b, s) \sigma(s)=2 \chi_{I}(b, s)
$$

$\chi(b, s)::$ EIKONAL function.

March 11, 2006
LCWS06: International Linear Collider Workshop. resummation

Rohini, Godbole CHEP, IISc, Bangalore, India.

Calculate then $\sigma^{\text {inel }}$ for for example $A, B=p, \bar{p}$,

$$
\sigma_{p p(\bar{p})}^{\mathrm{inel}}=2 \int d^{2} \vec{b}\left[1-e^{-n(b, s)}\right]
$$

Build $\mathrm{n}(\mathrm{b}, \mathrm{s})$ for $\sigma^{\text {inel }}$ and use it for

$$
\sigma_{p p(\vec{p})}^{\text {tot }}=2 \int d^{2} \vec{b}\left[1-e^{-n(b, s) / 2} \cos \left(\chi_{R}\right)\right], \chi_{R}=0 \text { in EMM }
$$

b is impact parameter \Longrightarrow transverse momentum of partons in hadrons

Approximations

$$
\begin{aligned}
& \text { - separate Pert. Vs Nonpert. terms } \\
& \rightarrow n(b, s)=n_{N P}(b, s)+n_{P}(b, s)
\end{aligned}
$$

- Further factorize b vs. s behaviour

$$
\rightarrow n(b, s) \approx A(b) \sigma(s)
$$

simplest model $n(b, s)=A(b)\left[\sigma_{\text {soft }}+\sigma_{j e t}\right]$
\Uparrow
matter distribution
\checkmark Model for $\mathrm{A}(\mathrm{b})$.

- $\sigma_{\text {soft }}$ parametrized
$\checkmark \sigma_{j e t}$ LO QCD jet x-sections
« Eikonal model not restricted to calculate ONLY c.sections also used to calculate properties of hadronic events. pioneering: T. Sjostrand, More recent : M. Seymore + Borozan JHEP (2002). resummation

At low energies and small $\sigma^{j e t}$
$\sigma_{A B}^{\text {inel }}=2 \int d^{2} \vec{b}\left[1-e^{-n(b, s)}\right] \simeq \sigma_{A B}^{s o f t}+\sigma_{A B}^{j e t}$
At high energies, the eikonalisation softens the energy rise of $\sigma^{i n e l}$ compared to that of $\sigma^{j e t}$.
\checkmark Eikonal $\chi(b, s)$ contains information on the energy and the transverse space distribution of the partons in the hadrons.
$\checkmark \sigma^{j e t}$ depends on the parton densities $f_{q / A}\left(x_{1}\right), f_{q / B}\left(x_{2}\right) x_{i}$ the longitudinal mmtm fraction
\checkmark Overlap function on the transverse space (momentum) distribution.
Thus simplest formulation with minijets to drive the rise and eikonalization to ensure unitarity :
$2 \chi_{I}(b, s) \equiv n(b, s)=A(b)\left[\sigma_{s o f t}+\sigma_{j e t}\right]$
The normalization depends both on $\sigma_{\text {soft }}$ and on the b-distribution.

How to calculate the transverse overlap function in terms of 'measured' quantities?

March 11, 2006
LCWS06: International Linear Collider Workshop. resummation

Rohini, Godbole
(page 8) CHEP, IISc, Bangalore, India.

Photo-production and extrapolated datas from DIS can be described through the Eikonal Minijet Model with Form Factors and QCD densities : low energy scaled from proton proceses.

The band is corresponds to $k_{0}=0.66 \pm 0.22 \mathrm{GeV}$ (ZEUS measurement) resummation
(page 9) CHEP, IISc, Bangalore, India.

Then

\uparrow Using EMM, with VMD and Quark Counting at low energy, and same set of parameters which fit γp
\checkmark adjusting the overall normalization 10% upwards,
$\checkmark k_{0}=0.4$ corresponds to the upper edge in the γp band. one gets a very good fit to the present data

Data for $\gamma \gamma$ total x -sections show a fast rise which can be reproduced with EMM

Use of 'measured' properties of the γ, p and factorisaation, simple quark counting rule to connect γp parameters to $\gamma \gamma$ case.
Normalization here is 10% off what you get from γp

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop. resummation

Rohini, Godbole
CHEP, IISc, Bangalore, India.

Already at $\sqrt{s}=500 \mathrm{GeV}$ predictions differ by a factor 3

March 11, 2006
tional Linear Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole
(page 11)
CHEP, IISc, Bangalore, India.

It is possible to describe the early rise, which takes place around $10 \div 30 G e V$ for proton-proton and proton-antiproton scattering, using GRV densities and a $p_{t m i n} \simeq 1 G e V$, but then the cross-sections start rising too rapidly, whereas a $p_{t m i n} \approx 2 G e V$ can reproduce the Tevatron points but it misses the early rise.

\checkmark The rise for $p p / \bar{p} p$ is too rapid for $p_{\text {Tmin }} \simeq 1 \mathrm{GeV}$ and miss early rise if $p_{T m i n} \simeq 2 \mathrm{GeV}$.
The best fit to the $\gamma \gamma$ data require 10% upward normalisation relative to γp data.
\checkmark No explanation for the initial decrease.

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop. resummation

Rohini, Godbole
(page 12) CHEP, IISc, Bangalore, India.

EMM model does O.K. qualitatively but is certainly not the whole story.
Improve the model by removing the approximations used.
Recall assumed $n(b, s)=A(b)\left[\sigma_{s o f t}+\sigma_{j e t}\right]$.

- The separation between s and b dependence only an approximation.
- Writing the overlap function as a $\mathcal{F} . \mathcal{T}$. of measured distributions does not allow for a s dependence of A
Pancheri and Collab. developed a model based on semi-classical method to calculate the impact parameter space distribution of partons in a hadron using resummation of soft gluon emissions.

$A(b, s)=A(b, M(s))$.
Here $M=<q_{\max }(s)>$ is the average of the 'maximum' energy allowed for single soft gluon emission.

March 11, 2006
LCWS06: International Linear Collider Workshop. resummation

Rohini, Godbole
(page 13) CHEP, IISc, Bangalore, India.

EMM needs further refinements, including

full LLO resummation to tame the rise

$$
n(b, s)=n_{s o f t}(b, s)+A_{P Q C D}(b, s) \sigma_{j e t}^{L O}
$$

Soft gluons can tame the rise

$$
\begin{aligned}
& A(b) \Longrightarrow \\
& A(b, s) \simeq \int d^{2} \vec{K}_{t} e^{i \vec{K}_{t} \cdot \vec{b}} \Pi\left(K_{t} \text { from initial partons }\right)
\end{aligned}
$$

$$
A_{P Q C D}(b, s) \equiv \frac{e^{-h(b, s)}}{\int d^{2} \vec{b} e^{-h(b, s)}}
$$

- $h(b, s)=\int_{k_{\text {min }}}^{k_{\max }} d^{3} \bar{n}_{\text {gluons }}(k)\left[1-e^{i k_{t} \cdot b}\right]$
- $k_{\max } \Longrightarrow$ average over densities \Uparrow as $\sqrt{s} \Uparrow$
- $k_{\text {min }}=0$ in principle but one needs a model for

$$
\alpha_{s}\left(k_{t}\right) \text { as } k_{t} \rightarrow 0
$$

tional Linear Collider Workshop. resummation

Rohini, Godbole
CHEP, IISc, Bangalore, India.

The Bloch Nordsieck model

- is like EMM model with $\sigma_{\text {jet }}^{Q C D}$ driving the rise
and in addition
Soft Gluon Emission from Initial State Valence Quarks in k_{t}-space to give impact parameter space distribution of colliding partons
- introduces energy dependence in the b-distribution of partons in the hadrons \Longrightarrow which depends on

1. $p_{\text {tmin }}$
2. parton densities

Two main results :

1. softening effect
2. dependence of hard scattering parameters is reduced

The softening effect happens

- as $\sqrt{s} \Uparrow$ the phase space available for soft gluon emission also \Uparrow
\checkmark the transverse momentum of the initial colliding pair due to soft gluon emission \Uparrow
\downarrow more straggling of initial partons \Rightarrow less probability for the collision resummation

Rohini, Godbole
(page 15) CHEP, IISc, Bangalore, India.

The energy dependence which ultimately will soften the rise due to mini-jets comes from the

maximum transverse momentum allowed to a single gluon.

$$
q_{\max }(\hat{s})=\frac{\sqrt{\hat{s}}}{2}\left(1-\frac{\hat{s}_{j e t}}{\hat{s}}\right)
$$

with integration to be done over

- \hat{s} the energy of the initial parton-parton subprocess -the jet-jet invariant mass $\sqrt{\hat{s}_{j e t}}$,

Averaging over densities

$$
=\frac{\sqrt{s}}{2} \frac{\sum_{i, j} \int \frac{d x_{1}}{x_{1}} f_{i / a}\left(x_{1}\right) \int \frac{d x_{2}}{x_{2}} f_{j / b}\left(x_{2}\right) \sqrt{x_{1} x_{2}} \int d z(1-z)}{\sum_{i, j} \int \frac{d x_{1}}{x_{1}} f_{i / a}\left(x_{1}\right) \int \frac{d x_{2}}{x_{2}} f_{j / b}\left(x_{2}\right) \int(d z)}
$$

with the lower limit of integration in the variable z given by $z_{\text {min }}=4 p_{\text {tmin }}^{2} /\left(s x_{1} x_{2}\right)$. resummation

Now make fits to the $p p$ and $p \bar{p}$ in the Bloch-Nordsieck (BN) model , the eikonal is of the form

$$
n(b, s)=\sigma_{s o f t} A_{B N}^{\text {soft }}+\sigma_{j e t} A_{B N}^{j e t}
$$

Soft gluon emission has here a twofold effect as the energy increases :

- with $\sigma_{\text {soft }}$ constant or $\Downarrow \sigma_{\text {soft }} A_{B N}^{\text {soft }} \Downarrow$
- with $\sigma_{j e t} \Uparrow$
$\sigma_{j e t} A_{B N}^{j e t} \Uparrow$ but not as much as without soft gluons resummation

A good description is obtained with a soft part given by

$$
\sigma_{s o f t}^{p p}=\sigma_{0} A_{B N}^{s o f t}(b, s) \quad \sigma_{0}=48 m b
$$

and

$$
\begin{aligned}
& \sigma_{s o f t}^{p \bar{p}}=\sigma_{0}\left(1+\frac{2}{\sqrt{s}}\right) A_{B N}^{s o f t}(b, s)
\end{aligned}
$$

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole CHEP, IISc, Bangalore, India.

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole
(page 19)
CHEP, IISc, Bangalore, India.

Recall M depended on the parton densities in the hadron. BN effect stronger for protons.

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
$\gamma \gamma$ total cross-sections
and the soft gluon resummation

Rohini, Godbole
(page 20)
CHEP, IISc, Bangalore, India.

Recall M depends on the parton densities in the target. 'soft' parameters for the proton determined using a given parton density for p and the soft parameters for the p determined using those for p and VMD.
What happens to the fit values of the parameters σ_{0}, p etc., if we change the p density. resummation

Rohini, Godbole
(page 21) CHEP, IISc, Bangalore, India.

Predictions for total x -sections in various models.
The shaded area: the range of results in the Eikonlaised Mini-jet model with soft gluon resummation (R.G. et al) (the G.G.P.S. model) the solid line: the prediction obtained using the GRV parton densities in the model. The long-dashed dotted curve (d) :the predictions for the DL fit. The dotted (BH) curve (c), the uppermost dashed curve (a): results of analytical models

March 11, 2006 resummation

Rohini, Godbole
CHEP, IISc, Bangalore, India.

PDF	$p_{t \operatorname{tin}}(\mathrm{GeV})$	$\sigma_{0}(\mathrm{mb})$	p
GRV	1.15	48	0.75
GRV94lo	1.10	46	0.72
	1.10	51	0.78
GRV98lo	1.10	45	0.70
	1.10	50	0.77
MRST[?]	1.25	47.5	0.74
	1.25	44	0.66

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole
(page 23)
CHEP, IISc, Bangalore, India.

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole CHEP, IISc, Bangalore, India.

The changes seem to cover similar range as by changing $p_{\text {min }}^{T}$.
My guess is our predictions for the total range is going to be VERY similar.
Work is in progres.

March 11, 2006
LCWS06: Interna-
tional Linear Collider Workshop.
$\gamma \gamma$ total cross-sections and the soft gluon resummation

Rohini, Godbole CHEP, IISc, Bangalore, India.

