
IVCrootIVCroot
the Software Frameworkthe Software Framework

of the 4th Concept of the 4th Concept 

lcws06 3/13/2006Corrado Gatto INFN-Lecce

Software Guidelines

The Framework

General Architecture

Data Model

Montecarlo

Preliminary results



Guidelines for the software frameworkGuidelines for the software framework
� Easy interface with existing packages:

– Geant3 , Geant4,  Fluka,  Event generators, HPSS etc

� Simple structure to be used by non-computing 
experts

� Portability

� Scalability

� Experiment-wide framework

� Use a world-wide accepted framework, if 
possible

Collaboration-specific framework is less likely 
to survive in the long term



Proposal for the Infrastructure: ROOTProposal for the Infrastructure: ROOT

� Fully OO framework, including:
– all needed functionalities present (from data taking to final 

plots)

– HEP classes (for modular, OO programming) ideal for 
decentralization of code developers

– integrated files and objects I/O

– transparent LAN and WAN support (rootd)

– transparent HPSS support

– parallel computation (PROOF)

– compression

– interface to SQL/RDBMS

– interface to GEANT3

– documentation tools



One Single and Modular frameworkOne Single and Modular framework

� persistency, containers

� histogramming services

� UI, GUI, 2-d, 3-d graphics

� C++ interpreter and scripting language + dynamic 
compilation and linking

� same for interactive and batch

� call the interpreter from compiled code (Interactive 
algorithm debugging)

� coding rules

� reconstruction & analysis are naturally developing in 
the same framework



...and more...and more
� Extensive CERN support

– Bonus for small collaborations

� Unprecedented Large contributing HEP Community 
– Open Source project

� Multiplatforms
� Support multi-threading and asynchronous I/O

– Vital for a reconstruction farm

� Optimised for different access granularity
– Raw data, DST's, NTuple analysis



LAN/WAN filesLAN/WAN files

� Files and Directories 
– a directory holds a list of named objects

– a file may have a hierarchy of directories (a la Unix)

– ROOT files are machine independent

– built-in compression

� Support for local, LAN and WAN files
– TFile f1("myfile.root")

– TFile f2("http://pcbrun.cern.ch/Renefile.root")

– TFile f3("root://cdfsga.fnal.gov/bigfile.root")

– TFile f4("rfio://alice/run678.root")

Local file

Remote file
access via

a Web server

Remote file
access via

the ROOT daemon

Access to a file
on a mass store

hpps, castor, via RFIO



Support for HSM SystemsSupport for HSM Systems

� Two popular HSM systems are supported:
– CASTOR

� developed by CERN, file access via RFIO API and 
remote rfiod

– dCache
� developed by DESY, files access via dCache API and 

remote dcached

TFile *rf = TFile::Open(“rfio://castor.cern.ch/alice/aap.root”)

TFile *df = TFile::Open(“dcache://main.desy.de/h1/run2001.root”)



PROOFPROOF

� Data Access Strategies
� Each slave get assigned, as much as possible, packets 

representing data in local files

� If no (more) local data, get remote data via rootd and rfio
(needs good LAN, like GB eth)

� The PROOF system allows:
– parallel analysis of trees in a set of files

– parallel analysis of objects in a set of files

– parallel execution of scripts

on clusters of heterogeneous machines



33--D GraphicsD Graphics
� Basic primitives

– TPolyLine3D, TPolyMarker3D, THelix, 
TMarker3DBox,TAxis3D

� Geant primitives
– Support for all Geant3 volumes + a few new volume types
– TBRIK,TCONE,TCONS,TCTUB,TELTU,TGTRA,THYPE,

TPARA,TPCON, 
TPGON,TSPHE,TTUBE,TTUBS,TTRAP,TTRD1,TTRD2,T
XTRU

� Rendering with:
– TPad
– X3D (very fast. Unix only. Good on networks)
– OpenGL
– OpenInventor (new addition in 3.01)



General Architecture: GuidelinesGeneral Architecture: Guidelines
� Ensure high level of modularity (for easy of 

maintenance)

� Absence of code dependencies between different 
detector modules (to C++ header problems)

� Design the structure of every detector package so that 
static parameters (i.e. geometry and detector response 
parameters) are stored in distinct objects 

� The data structure to be built up as ROOT TTree-objects 

� Access either the full set of correlated data (i.e., the 
event) or only one or more sub-sample (one or more 
detectors).



4th Concept simulation & 4th Concept simulation & 
reconstruction Software: IVCrootreconstruction Software: IVCroot

� Derived from Aliroot

� Robustness and efficiency now proven

� Architecture and Data Model unmodified

� Some adaptation to the 4th Concept (minor changes)

� Build new modules for 4th Concept specific detectors

� Leave the Software Engineering to the experts

� Concentrate on the Physics



Alice Performances (MDC IV)Alice Performances (MDC IV)
Data generation in LDC, event building, no data recording

Data generation in LDC, event building, data recording to disk

Total: 192 CPU servers (96 on Gbe, 96 on Fe), 36 DISK servers, 10 TAPE servers



Building a Modular SystemBuilding a Modular System

Use ROOT’s
Folders



Folders TypesFolders Types
� Data

– Constants
– Event

� Tasks
– Tasks can be organized into a hierarchical tree of tasks and displayed  in 

the browser. 

– A Task is an abstraction with standard functions to Begin,Execute,Finish.
– Each Task derived class may contain other Tasks that can be executed 

recursively

� Data Folders are filled by Tasks (producers)

� Data Folders are used by Tasks (consumers)

Folders InteroperateFolders Interoperate



CoordinatingCoordinating TasksTasks & Data& Data
� Detector stand alone (Detector Objects)

– Each detector executes a list of detector actions/tasks
– On demand actions are possible but not the default
– Detector level trigger, simulation and reconstruction are implemented as clients of 

the detector classes

� Detectors collaborate (Global Objects)
– One or more Global objects execute a list of actions involving objects from several

detectors

� The Run Manager
– executes the detector objects in the order of the list
– Global trigger, simulation and reconstruction are special services controlled by the 

Run Manager class

� The Offline configuration is built at run time by 
executing a ROOT macro



AliDetector
AliFMD

AliDetector
AliTRD

AliDetector
AliTPC

Detector
actions

AliDetector
AliTOF

Detector
actions

TPC
Detector Class

Module Class DCHGeometry

Geometry Class
-CreateGeometry
-BuildGeometry
-CreateMaterials

Detector
tasks

The Detector ClassThe Detector Class
� Base class for subdetectors

modules. 
� Both sensitive modules (detectors) 

and non-sensitive ones are 
described by this base class. This 
class           

� supports the hit and digit trees 
produced by the simulation

� supports the the objects produced 
by the reconstruction.                               

� This class is also responsible for 
building the geometry of the 
detectors and the event display.

� Several versions of the same 
detector are possible (choose at 
run time)



Detector Level StructureDetector Level Structure

Detector Class
TPC

DetectorTask Class

TPC Simulation

DetectorTask Class

TPC Trigger
DetectorTask Class

TPC Reconstruction

DetectorTask Class

TPC Digitization

Hits

Digits

Local tracks
TrigInfo

Branches
of a Root Tree

List of
detectors

List of
detector

tasks



GlobalGlobal SoftwareSoftware StructureStructure

Detector Class

Global Reco

Detector
tasks

Run Class

Run Manager

Detector Class

TPC

Detector
tasks

ROOT 
Data Base

Tree
Branches

One or more
Global Objects

execute a list of tasks
involving objects

from several detectors

Detector Class

EMC

Detector
tasks

Run Class

MC Run Manager

Detector Class

MUON

Detector
tasks

The Run manager
executes

the detector objects
in the order of the list

Each detector
executes a list

of detector tasks

On demand actions
are possible but
not the default



RunRun--time Datatime Data--ExchangeExchange
� Post transient data to a 

white board

� Structure the whiteboard 
according to detector sub-
structure & tasks results

� Each detector is 
responsible for posting its 
data

� Tasks access data from 
the white board

� Detectors cooperate 
through the white board

Class 1 Class 2

Class 3

Class 4

Class 5Class 6

Class 7

Class 8



MontecarloMontecarlo OrganizationOrganization

The Virtual Montecarlo

Geant3/Geant4/Fluka Interface

Generator Interface



The Virtual MC ConceptThe Virtual MC Concept
� Virtual MC provides a virtual interface to Monte Carlo

� It decouples the dependence of a user code on a concrete MC 

� It allows to run the same user application with all supported Monte 
Carlo programs

� The concrete Monte Carlo (Geant3, Geant4, Fluka) is selected and 
loaded at run time 

� It allows the comparison between Geant3 and Geant4 using the 
same geometry and data structure (QA)

� Smooth transition to Geant4 with maximum reuse of Geant3 based 
simulation (user-) code

� Ideal when switching from a fast to a full simulation: VMC allows 
to run different simulation Monte Carlo from the same user code



Example: Calling a Virtual FunctionExample: Calling a Virtual Function

MC Virtual
GetPosition

Geant3
GetPosition

Geant4
GetPosition

FLUKA
GetPosition

MC->GetPosition(Float_t *x)



Detector Detector Geometry in VMCGeometry in VMC
� The geometry can be

specified using:
– Root (TGeo)
– Geant3
– Geant4
– Fluka
– XML
– Oracle
– CAD



Generator InterfaceGenerator Interface
� TGenerator is an abstract base class, that defines the 

interface of ROOT and the various event generators (thanks 

to inheritance)

� Provide user with
– Easy and coherent  way to study variety of physics signals

– Testing tools 

– Background studies

� Possibility to study
– Full events (event by event) 

– Single processes 

– Mixture of both (“Cocktail events”) 

� Easily interface with existing fortran generators

� Many already existing: Pythia, Jetset, Herwig, etc.

� Can also import/export plain text files



An Example: An Example: PythiaPythia and and JetsetJetset
� TPythia derived from TGenerator

– Access to Pythia and Jetset common blocks via class 
methods

– implements TGenerator methods

� MyPythia derived from TPythia
– High level interface to Jetset and Pythia
– Tailored to our special needs:

� generation of hard processes (charm, beauty, J/ψ..)

� selection of structure function

� forced decay modes

� particle decays … and more



One Step Up: One Step Up: GenCocktailGenCocktail

� Generation of Cocktail of different processes

– Generation from parameterised transverse momentum 
and rapidity

– Decays using JETSET

– Rate and weighting control

– Allow easy mixing of signal and background

● Mix digits generated with different Montecarlo’s
– Ex.: Signal with G4 + background with Fluka



Summary of FeaturesSummary of Features
� IVCRoot (from after AliRoot) is an highly modular system
� The basic framework (developed by R. Brun an F. Carminati) is 

robust and efficient
� It takes care of the I/O system (persistent data) and of the steering 

of the modules
� Each detector is represented by an independent module developed 

by the user on the base od a virtual detector class
� Persistent data structure can be modified to meet detector specific 

needs
� Multiple versions (same or different detector: ex. TPC vs DCH) 

can live togheter 
� Actual version is choosen at run time (no need to recompile)
� Perfect for an ILC study environnment

� Cons: long learning curve (about three months)



Interface to other ILC SoftwareInterface to other ILC Software

� Detector Geometry can be exchanged with the system developed at SLAC 
trough the VGM

� The Virtual Geometry Modeller (VGM) has been developed as a 
generalization of the existing convertors roottog4, g4toxml provided within 
Geant4 VMC

� VGM can provide format exchange among several systems (Geant4, Root, 
XML AGDD, GDML)

� The implementation of the VGM for a concrete geometry model represents a 
layer between the VGM and the particular native geometry. 

� At present this implementation is provided for the Geant4 and the Root TGeo 
geometry models.  

� Not an issue if the Geometry is described using Root TGeo

� At present, digitization of geometry imported in IVCRoot needs to be coded 
within the system

� SLAC’s extended GDML (for digitization) could be implemented for 
automatic digitization



IVCroot statusIVCroot status
� IVCroot is already working for the IV Concept design

� All the machinery is in place

� All simulation/reconstruction steps are being 
implemented:
– Hits production

– Summable Digits + Digits

– Pattern recognition

– Calibration

– Reconstruction

– PID

� Analysis is performed outside IVCroot

� Physics results will be out soon



Detector SimulationDetector Simulation
� Vertex Detector

– r= 3.9, 7.6, 15, 24 cm
– Resolution: 50/√12x 50/√12 μm2 or 12(rϕ)x100(z) μm2 + 35(rϕ)x25(z) μm2

– Si thickness: 200 μm wafer + 150 μm electronics
– Material Budget: 0.4% Xo (include termal shield)

� Central Tracker
– Mock “real” detector (to be replaced by 4th Concept’s)
– Mostly to test framework and Kalman Filter

� ECAL 
– Technology: Lead tungstate crystals (PWO)
– Crystal size:   2x2x18 cm3 + 10 cm Electronics/cooling
– Segmentation: matches the DREAM calorimeter
– Readout :  5x5 mm2 APD
– RM: 2.2 cm
– Depth: 20 Xo

– One Readout crystals (soon to become Dual Readout)



Detector SimulationDetector Simulation
� DREAM

– No digitization implemented yet

– Technology: C/S fibers in W or Cu

– Unit cell:   1x1x100 cm3 variable across η
– Unit readout cell:   2x2x100 cm3

� Muon system
– “Generic” tracker for the Kalman filter with Pattern 

Recognition performed by the Central Tracker

– 18 planes, each 0.7% Xo, 1-15 reading/plane, 200-300 μm

– Aimed to test tracking in air with -1.5 T field, L*=2.5 m and 
large √N



Geometry PictureGeometry Picture



Side View (Inside Inner Coil)Side View (Inside Inner Coil)



Event display:e+eEvent display:e+e��HHooZZoo-->X>Xμμ++μμ--



Pixel Detector + Central TrackerPixel Detector + Central Tracker



Muon SystemMuon System
� Central Tracker for 

pattern recognition + 
seeds finding

� Kalman filter for trach fit

� Compare momentum 
reconstructed in the MS 
to that generated at the 
origin



ZZoo AnalysisAnalysis
� PID from DREAM only



ConclusionsConclusions

� IVCroot up and running

� Substantial departure from existing ILC code

� But with exchange-program in mind

� Physics results not far away



Backup Backup 
slidesslides



ROOT I/O PerformanceROOT I/O Performance

� rootd vs nfs I/O test at FNAL: same performane
(>50 MB/sec on lan)

� Max throughput over Gigabit Ethernet: 36 MB/s

� Performance improves with chunk size

� Highest throughput achieved: ADC IV (350 
MB/sec to 1800 MB/sec)



Computing Model: MONARCComputing Model: MONARC
� A central site, Tier-0

– will be hosted by PSI.

� Regional centers, Tier-1
– will serve a large geographic region or a country. 
– Might provide a mass-storage facility, all the GRID services, and an adequate quantity 

of personnel to exploit the resources and assist users.

� Tier-2 centers
– Will serve part of a geographic region, i.e., typically about 50 active users. 
– Are the lowest level to be accessible by the whole Collaboration.
– These centers will provide important CPU resources but limited personnel. 
– They will be backed by one or several Tier-1 centers for the mass storage.
– In the case of small collaborations, Tier-1 and Tier-2 centers could be the same.

� Tier-3 Centers
– Correspond to the computing facilities available at different Institutes. 
– Conceived as relatively small structures connected to a reference Tier-2 center.

� Tier-4 centers
– Personal desktops are identified as Tier-4 centers



Folders Type: TasksFolders Type: Tasks

Clusterizer
(per detector)

Digitizer
(per detector)

Reconstructioner

1…3
Reconstructioner

(per detector)

Analizer

DQM

1…3 Fast Reconstructioner
(per detector)

Alarmer

Digitizer
{User code}

Clusterizer
{User code}

Analizer



Folders Type: TasksFolders Type: Tasks

Histogrammer
(per detector)

Calibrator

1…3
Calibrator

(per detector)

Histogrammer
(per detector)

Aligner

1…3
Aligner

(per detector)



ProcessingProcessing FlowFlow

RecParticle

Tracks

ECAL

Hits

SDigits

Digits

RecPoints

ITS

Detector stand alone tasks

Tracks

RecPoints

Tracks

TPC

Detectors collaborate

Hits

SDigits

ITSUnderlying event Signal event

Merging



Traditional GEANT3 Stepping Traditional GEANT3 Stepping 
SchemaSchema

sensitive
material?

Yes

No
GUSTEP
swithcyard

Fill GFINDS
Tree

Module Step
switchyard

Module Version Step

sensitive
material?

Yes

No

Continue transport

Add a hit



VMC Stepping SchemaVMC Stepping Schema

Module Version StepManager
Add the hit

GUSTEP

FLUKA Step

Geant4
StepManager

Disk I/O
Objy
Root

IVCRun::StepManager



The Interface to GEANT3The Interface to GEANT3
� The class TGeant3 provide the interface between ROOT and 

GEANT3

� Geant3 subroutines are addressed as methods of an object of the 
class TGeant3

� The TGeometry class describes the geometry of a detector 
in the GEANT3 style description

� A Geometry object consist of the following linked lists: 

– the TMaterial list (material definition only). 

– the TRotmatrix list (Rotation matrices definition only). 

– the TShape list (volume definition only). the TNode list 
assembling all detector elements. 



Calibration TasksCalibration Tasks
� Sub-detector level

– requires only the sub-detector data and the general event information, for a 
sub-sample of events. 

– It requires a deep knowledge of the sub-detector, and it is therefore 
strongly dependent on the group that is responsible for the sub-detector 
construction, installation and operation. 

– It could be performed at the Tier sites where sub-detector groups are 
active.

– The database will be accessible by the reconstruction program via one 
server

� Global calibration
– Requires only the sub-detector data and the general event information, for 

a sub-sample of events.
– Performed at the Tier-0 site by the offline team.
– The resulting calibration parameters are stored into a database common to 

all sub-detectors.
– The calibration database will be subsequently accessed through a ROOT 

interface. 



Data Access: ROOT + RDBMS ModelData Access: ROOT + RDBMS Model

histograms

Calibrations

Geometries

Run/File
Catalog

Trees

Event Store

ROOT
files

Oracle
MySQL



ExamplesExamples of RDBMS in HEPof RDBMS in HEP
� RHIC (started last summer)

– STAR 100 TB/year    + MySQL
– PHENIX 100 TB/year    + Objy
– PHOBOS 50 TB/year     + Oracle

� FNAL (starting this year)
– CDF 200 TB/year  + Oracle

� DESY
– H1 moving from BOS to Root for DSTs and   microDSTs 30 TB/year DSTs + 

Oracle
� GSI

– HADES Root everywhere  + Oracle

� SLAC
– BABAR  >5 TB microDSTs, upgrades under way + Objy

� CERN
– NA49   > 1 TB microDSTs + MySQL
– ALICE   + MySQL
– AMS Root + Oracle



Central DatabaseCentral Database
– Oracle  RDBMS

– Advantages
� very stable and reliable
� support for transaction 

processing
� built-in procedural language
� triggers
� support for complex data types 

and BLOBs
� support for VLDB (very large 

databases), e.g. data partitioning
� 7 × 24 availability (on-line 

backup, etc.)

– Disadvantages
� quite expensive
� complex and difficult to 

administer

– PostgreSQL / MySQL

– Advantages
� free of charge
� quite easy to administer
� stable enough
� support for transaction processing
� built-in procedural languages
� triggers
� support for complex data types 

and BLOB objects

– Disadvantages
� not very fast (but fast enough for 

this particular application)
� no support for distributed processing 

(data replication, etc.)
� no support for heterogeneous 

systems
� no support for VLDB
� no 7 × 24 availability



33--D viewsD views
CMS

CMS in a pad

ATLAS Babar



TGeo example: TGeo example: AtlasAtlas

29 million nodes



Processing FlowProcessing Flow
Simu sig Simu bkg 1

hits files sig hits files bkg 1

SDigitizer

SDigits files sig

SDigitizer

SDigits files bkg

Digitizer

Merged Digits files

Reconstruct

ESD

Simu bkg 2

hits files bkg 2

SDigitizer

SDigits files bkg

VMC

Steer



GRIDGRID

� A specific interface to EDG is being developed 
at CERN (AliEn)

� It requires API EDG SE

� Technology needs to be improoved

� Talks in progress with Carminati for a possible 
involvement of the Lecce group



Folders Type: TasksFolders Type: Tasks

Histogrammer
(per detector)

Vertexer

1…3
Vertexer

(per detector)

Histogrammer
(per detector)

Trigger

1…3
Trigger

(per detector)



Data FolderData Folder StructureStructure

Event(i)

1…n Raw Data
TPC Hits

EMC Hits

MUO Hits

Reco Data

TPC
Digi

Track
Particles

MUO

Run

Configur.

Conditions

Constants

Header

Track Ref.

Kinematics
Particles

EMC

MC only

Kine.root
Event # 2

TreeK

Event # 1
TreeK

DCH.Hits.root
Event # 2

TreeH

Event # 1
TreeeH

DCH.Digits.root
Event # 2

TreeD

Event # 1
TreeeD

Main.root
Header
TreeeH



Data ModelData Model
� ESD (Event Summary Data)

– contain the reconstructed tracks (for example, track pt, particle Id, pseudorapidity and phi, 
and the like), the covariance matrix of the tacks, the list of track segments making a track 
etc…

–

� AOD (Analysis Object Data)
– contain information on the event that will facilitate the analysis (for example, centrality, 

multiplicity, number of electron/positrons, number of high pt particles, and the like).

� Tag objects
– identify the event by its physics signature (for example, a Higgs electromagnetic decay and 

the like) and is much smaller than the other objects. Tag data would likely be stored into a 
database and be used as the source for the event selection.

� DPD ( Derived Physics Data)
– are constructed from the physics analysis of AOD and Tag objects. 
– They will be specific to the selected type of physics analysis (ex: mu->e gamma, mu->e e e)
– Typically consist of histograms or ntuple-like objects. 
– These objects will in general be stored locally on the workstation performing the analysis, 

thus not add any constraint to the overall data-storage resources 



Reconstruction flow and ESD objectsReconstruction flow and ESD objects

� The various tasks (calibration, clustering, …) are 
done at the level of the sub-detectors

� Each sub-detector produces a list of reconstructed 
objects (RecPoint, TrackSegment, and 
RecParticle). 

ESD

RAW DATA
CALIBRATION

CLUSTERING

TRACK 
SEGMENT
MAKING

PARTICLE
IDENTIFI-
CATION

RecPoints

Track-
Segments

RecParticles



Reconstruction flow, AOD and TagReconstruction flow, AOD and Tag
� Task is accomplished with the 

cooperation of the sub-detectors, 
producing a list of reconstructed 
particles and the event header. 

Particle 
Identification

AOD

RecParticles

Tag

Event

Header

Event-Header
Builder

ESD

Track
Segments

Sub-detector 
2

Track
Segments

Sub-detector 
1

Track
Segments

Sub-detector 
n



MontecarloMontecarlo Processing FlowProcessing Flow

Event Header

Mix With

Digits
(aka Raw Data)

Tag

Reconstruc-tion

Background
SDigits

Generation
Signal SDigits

ESD

RecPoints
TrackSegments

AOD

Rec-
Particles


