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Theoretical challenges in neutrino cross-sections

Outline;

m Introduction and general remarks.
Challenge # 1: understanding CCQE peak.

Challenge # 2: a size and characteristics of 2p-2h contribution.

Challenge # 3: understanding 7 production in the A region on nuclear
targets.

m Conclusions.
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CCQE is vy n—p~ p, or vy p— u™ n.

RES stands for resonance region e.g. v, p — pu~ ATT =y~ p 7t
one often speaks about SPP - single pion production

DIS stands for: more inelastic than RES.

In case of nucleus target scattering one must consider also (coherent pion
production) and MEC (2p-2h).
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General remarks

m Motivation: reconstruction of v energy based on detected final state
particles

B a pattern of v oscillations is energy dependent
m A general picture: impulse approximation

B interaction is a two step process: scattering on a bound nucleon
(CCQE , RES or ) followed by final state interactions

® |A has its own limitations: momentum transfer should be large
enough

m Challenges are related both with primary interaction and nuclear effects.
m Typically, challenges have both “theoretical” and “experimental” aspects

m E.g. for CCQE it would be nice to calculate axial form factor with
lattice QCD, but also it would be great to have new measurements
in hydrogen/deuterium bubble chamber experiments.
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Challenge # 1. Understanding CCQE/QE peak region.

In a few GeV region CCQE is most important to understand properly.

m CCQE is analogous to eN — elN scattering.

m Nuclear effects in electron and neutrino nucleus scattering are similar:
mean-free path of virtual photon and W/Z boson are much larger than
nucleus size.

m We can use information gathered in electron scattering studies.

m It is necessary to include MEC contribution.
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Challenge # 1. (cont.)

In the case of v scattering we know the story:

MiniBooNE large CCQE Ma measurement.

Marteau-Martini-Chanfray-Ericson theoretical explanation in terms of a
large MEC contribution.

Nieves et al computations implemented in MC generators.
MiniBooNE CCQE 7, measurement.
MINERvA CCQE v, and 7, measurements.

Problems with reproducing all the data with a single model.
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Challenge # 1. (cont.)

Important question related with the MINERvVA measurement: Is Monte Carlo
(GENIE) bias fully understood?

Removing Background Events

v, Tracker = y'p * MINERvA Preliminary
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How well MC (here GENIE) reproduces distribution of hadronic energy?
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Challenge # 1. (cont.)

Ab initio Green function Monte Carlo (GFMC) computations (electron
scattering) show that there is a significant 2-body current (MEC) contribution
in the QE peak region (below results for |g| = 570 MeV/c):
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QE peak in Rt (2b is 2p-2h).
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Challenge # 1. (cont.)

Ab initio computations have important limitations
m light nuclei (numerical complexity and nuclear structure)

m restricted kinematical region (nonrelativistic regime, no pion production)

They may be used to benchmark effective models in kinematical region where
both are reliable

m this is challenging because GFMC is

most reliable at low |g| when IA
cannot be fully trusted.
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Rocco, Lovato, Benhar, arXiv:1610.06081 [nucl-th]
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Challenge # 2. A size and characteristics of MEC contribution.

T2K results for CCOm: Phys.Rev. D93 (2016) 112012
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Challenge # 2. A size and characteristics of MEC contribution.

Investigation of more exclusive channels like 1u071p, 1u072p can be very
useful.

Two motivations:

m v, energy reconstruction is better.

m Measurement of MEC can
hopefully be done.

Transverse kinematics studies:

Lu et al Phys.Rev. C94 (2016) 015503; Lu,
Betancourt (for the MINERvVA Collaboration),
arXiv:1608.04655 [hep-ex]; Dolan, Lu, Pickering,
Vladisavljevic, Weber (for the T2K collaboration)

arXiv:1610.05077 [hep-ex] Acciarri et al., PRD90 (2014) 012008

ArgoNeuT hammer events.
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Challenge # 2. A size and characteristics of MEC contribution.

Investigation of more exclusive channels like 1ulp, 1u2p.
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&
final state nucleons from of MEC S
events %
m isospin composition of NN e
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(2013) 113007
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Challenge # 2. A size and characteristics of MEC contribution.

A possible goal is to identify true CCQE in CCOm sample of events. Remaining
are MEC and RES with 7 absorption.

m For 1u1p07 events under CCQE hypothesis using energy and momentum
conservation one can reconstruct v and neutron momentum vectors.

m pr is unbalanced transverse momentum (transverse relative to neutrino
momentum)

2 2 2
(Ma+ ki +pp — E' —Ey)® —pT — Mz 4
! /
2(Ma +ky +p; — E' — Epr)
Pneutron = \/ﬁ?,- + Pi-

Ma target mass, E’, k; muon energy and longitudinal momentum, E,/, p;
proton energy and longitudinal momentum, M7_; remnant nucleus mass.

PL =

’

E, =ki +pPL —PL-

If FSI effects are under control one can arrive at very good seperation of
CCQE from RES and MEC with an excellent E, reconstruction of CCQE

enhanced sample. Details: back-up slides.
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Challenge # 2. A size and characteristics of MEC contribution.

One gets high purity CCQE sample of events (~ 95%) with a very good v,
energy reconstruction:

w F .
E [ — QEformula [ ] . traditional CCQE
a [ Erec formula
g 10k full reco rec TO ula.
£ full reco -
L (neutron < 300MeVi/c) = . - our EV formula
[ without a cut on neutron
[ momentum.
10°
F ] . our E, formula
T without a cut on neutron
—05"6.25720.5"0.15 20.7-0.05 0 0.05 01 0.15 0.2
Eree0 ELrue’nGeV momentum.
Furmanski, JTS, arXiv:1609.03530 [hep-ex]. Peaks come from argon shell structure!

WARNING: details depend on the quality of MC FSI models.
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Challenge # 3. Understanding 7 production in the A region on
nuclear targets.
There are several ingredients of theoretical computations

m N — A transition matrix element (in terms of form factors)

m a model of non-resonant background

m A self-energy in nuclear matter

m 7 final state interactions effects (absorption, charge exchange).
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Challenge # 3 (cont.)

N — A transition matrix elements, a lot of hard work to extract information
form old ANL and BNL deuterium bubble target experiments:

m an apparent cross section normalization tension understood in terms of
flux errors
Graczyk, JTS, et al, PRD80 (2009) 093001; Rodrigues et al, Eur.Phys.J. C76 (2016) 474

m inclusion of non-resonant background has impact on extracted values of
Mz and C3(0)
Hernandez, Nieves, Valverde, PRD76 (2007) 033005

m most of studies focus on v, p — u~ pr™ channel but there seem to be a

tension with other two channels
Graczyk, Zmuda, JTS, PRD90 (2014) 093001

m deuteron effects are surprisingly large
Wu, Sato, Lee, PRC91 (2015) 035203
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Challenge # 3. (cont.)

MiniBooNE MINERVA
m target is CH- m target is CH
m flux peaks at m NuMi flux (1.5 — 10) GeV with
600 MeV, without < E, >~ 4 GeV
high energy tail = m acut W<1.4GeV
the relevant dynamics . . )
is in the A region m as a result, the A region is investigated, like

h - in the MiniBooNE experiment
m coherent 7

production is a part m coherent 7 production is a part of the signal

of the signal m signal is defined as 17" and no other 7% in

m signal is defined as the final state
17" and no other

) m contrary to MiniBooNE there can be
pions in the final

arbitrary number of 7% in the final state

state. m due to W cut there is no phase space
0
Aguilar-Arevalo et al. [MiniBooNE for many 7"s though
Collaboration], PRD83 052007

Eberly et al, [MINERVA Collaboration], PRD92 (2015) 092008

(2011).
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Challenge # 3. (cont.)

Does it make sense to compare MiniBooNE and MINERVA results?

m very different energies
But...
m the same A mechanism

VP T -#- Radecky et al.
Weld
— best fit
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E
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E (GeV)

K. Graczyk, D. Kietczewska, P. Przewtocki, JTS,

PRD80 (2009) 093001

m the only major difference is
coming from v energy is
normalization

m 7" production cross section at
4 GeV is ~ twice that at 700 MeV

m less important: slightly different
definitions of the signal.
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do/dT, (10*'em®MeV nucleon)

Challenge # 3. (cont.)

NuWro MiniBooNE flux -------

NuWro MINERVA flux -

MiniBooNE ~——
MINERVA

o

o
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m the ratio is expected to
be quite flat

m there is a worrying
data/MC normalization
dicrepancy, more than
40%

NuWro is not perfect but the ratio result seems to be mostly independent on
the model details. The only really important input is A excitation cross section. <

experimental
3 NuWrg -------

e
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da/dT, MINERvA/MiniBooNE ratio
n

=}

The actual normalization discrepancy is smaller
because MINERVA made better estimate of the
flux and all the older cross section must be

increased by 10-15% (no official data available

yet).
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Conclusions

m There is a lot of experimental and theoretical activities focused on v cross
sections.

m There is a lot of progress,

but ... much is left to be done.

My feeling is that further progress depend on precise cross section
measurements (experimental challenges)

m 7 production — to resolve MiniBooNE/MINERVA tension.
m CCQE peak — to estimate a size of MEC contribution.
and on (theoretical challenges)

m ability to explore information contained in hadronic final state (FSI effects
for m and nucleons, reliable models of hadronic final state from MEC
events).
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Back-up slides
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Challenge # 2. A size and characteristics of MEC contribution.

M_, can be estimated using information about argon shell model structure:

Subshell ‘ E, [MeV] ‘ on [MeV] ‘ # neutrons nq,
62

Ts1,2 6.25 2
1p3 /2 40 3.75 4
1py /s 35 3.75 2
1ds /> 18 1.25 6
281 /5 13.15 1 2
1d3 /5 11.45 0.75 4
15 5.56 0.75 2

Ankowski, JTS, Phys.Rev. C77 (2008) 044311

where E, is energy level and o, is its width.

One gets probability distribution for separation energy:
P(E) = % ;naG(E — Ea,0a)

(G is Gaussian distribution, N number of neutrons) and

Mp = 22Mp + 18 Mp — 343.81 MeV,

Mj_4 =M — My +E.
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Challenge # 2. A size and characteristics of MEC contribution.
Selection: 1u1p07 with some proton reconstruction threshold pep,?

When reconstructed neutron momentum has very large value (wrt Fermi
momentum)?

m Event was MEC. Second proton momentum is below threshold.

m Event was RES with 7 being absorbed.

m Event was CCQE with proton suffering from severe FSI effects.
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Challenge # 2. A size and characteristics of MEC contribution.

Typical distribution of reconstructed One can try to optimize reconstructed
neutron momentum: neutron momentum cut:
12000 c
= F G
S [ —— GENIE NuMI Total 5 T
o 100001 -
© aoook- GENIE NuMI GE .é 0.8 W
F 3 08
g GENIE NuMI non-QE @ r —— NEUT
& o4l GENIE
< NuWro SF
0.2~ — — NuWro LFG
R TR I TN P Wi e = I P I I I B
R VR - TR Y S n's 07 0.8 00 % 0.2 0.4 06 08 1
reco neutron momentum / GeV/c signal acceptance

Furmanski, JTS, arXiv:1609.03530 [hep-ex].

Optimal cut is peur = 300 MeV/c.

A sample that are rejected contains many MEC events!.
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Challenge # 3. (cont.)

Composition of signal in two experiments according to NuWro
MiniBooNE

m RES: 87.1%

m 1 6.7%

m :3.6%

m CCQE and MEC: 2.7%

MINERvVA

m RES: 84.7%

m :10.7%

m CCQE and MEC: 4.6%
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Challenge # 3. (cont.)

The only relevant difference is in normalization: at MINERVA energies cross
section is larger by a factor of ~ 2!

VPP -~ Radecky et al.

W<14 .
— best fit

- Kitagaki et al.

— best fit

E (GeV) E (GeV)

Total cross section for » + p— w~ + p + @ . In the left panel the ANL data [5] with the cut W = 1.4 are shown (black
squares), while the right panel presents the BNL data [42] (without cuts in W)—black triangles. The overall normalization error is not
plotted. The best fit curves were obtained with a corresponding cut in W. The theoretical curves were obtained with dipole
parametrization Eq. (32) with M, = 0.94 GeV and C2(0) = 1.19. The shaded areas denote the 1o~ uncertainties of the best fit
The theoretical curves are not modified by the deuteron correction effect

Graczyk, Kietczewska, Przewtocki, JTS, PRD80 093001 (2009).




