HPTPC R&D in Spain for Dark Matter: The T-REX project

F.J. Iguaz

on behalf of Zaragoza group

Workshop on Neutrino Near Detectors based on gas TPCs

9th November 2016

Work partially supported by Juan de la Cierva program

1

(*) iguaz@unizar.es

F.J. Iguaz - HPTPC R&D in Spain for DM

Acknowledgements

2

Work here presented made by many people:

- Fran Aznar
- Jose M Carmona
- Juan Castel
- Susana Cebrián
- Theopisti Dafni
- Alicia Diago (*)
- Javier Galán (*-> now @ SJTU)
- JuanAn García (*-> now @ Inst. HEP, Beijing)
- Hector Gómez (*-> now @ APC)
- Javier Gracia
- Diego González-Díaz (*-> now @ Univ. Santiago)
- Diana C. Herrera (*-> now @ Colombia)
- Paco Iguaz
- Igor G Irastorza (PI)
- Gloria Luzón
- Hector Mirallas
- Asun Rodríguez (*)
- Elisa Ruiz
- Laura Seguí (*-> now @ IRFU/CEA-Saclay)
- Alfredo Tomás (*-> now @ Imperial)

And also people from IRFU/SEDI, CERN (Rui de Oliveira's workshop), LSC & GIFNA / UNIZAR.

F.J. Iguaz - HPTPC R&D in Spain for DM

HPTPCs for Neutrinos - CERN, 9 Nov 2016

erc

European Research Council

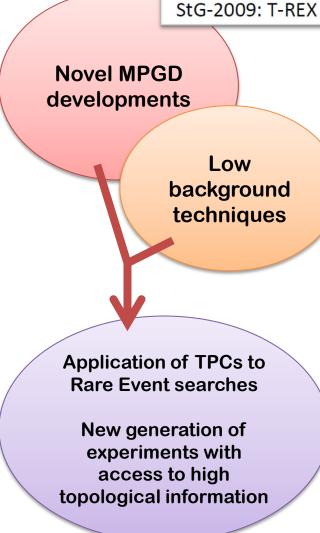
StG-2009: T-REX

GOBIERNO DE ESPAÑA

Outline

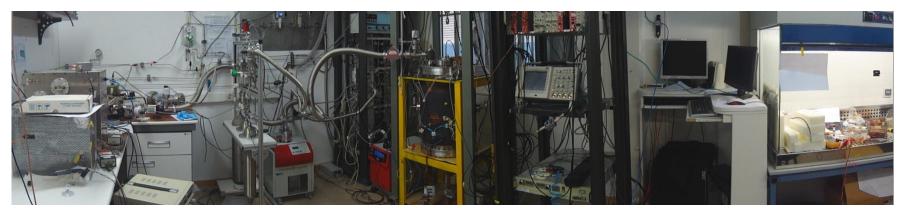
- The T-REX project & Micromegas-based TPCs.
- TREX-DM: description, results & upgrades for LSC.
- Conclusions.

The T-REX project


• ERC Starting-Grant by I.G. Irastorza:

TPC for Rare Event search eXperiments

- TPCs offer high potential for rare event searches
 - Relative large choice of target gases.
 - Rich topological information in gas.
 - High granularity of readout plane.
- But...
 - Calorimetry?
 - − Gas \rightarrow low density \rightarrow Scaling-up?
 - Complex detectors -> Radiopurity?


TREX claim:

TPCs equipped with MPGD (esp. Micromegas) may override traditional prejudices to gaseous TPCs: simplicity, robustness, scaling-up & radiopurity.

Infrastructure created: T-REX labs

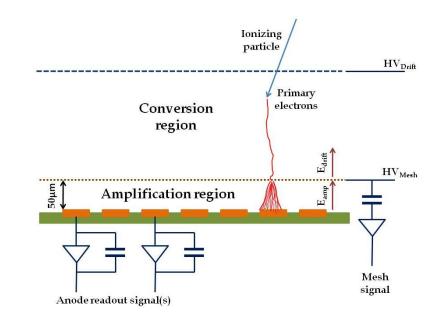
About 100 m² lab space at UNIZAR...

F.J. Iguaz - HPTPC R&D in Spain for DM

- 5
- HPTPCs for Neutrinos CERN, 9 Nov 2016

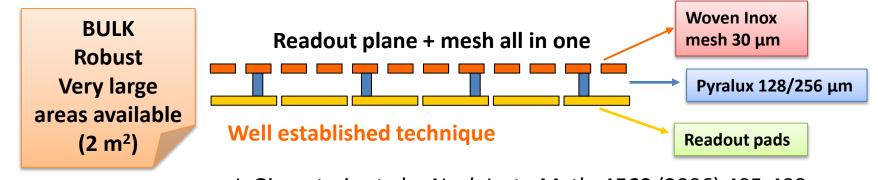
Micromegas-based TPCs

Micromegas readout plane

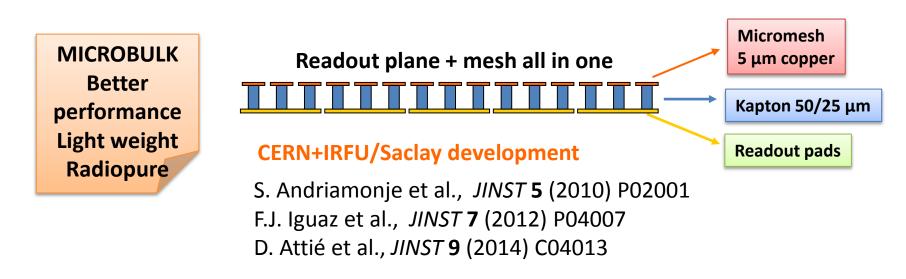

- Pixelised anode plane.
- Suspended metallic micromesh.

Micromegas working principle

- Primary e-s go through mesh holes.
- Trigger an e- avalanche in the gas, inducing signals both mesh and anode.

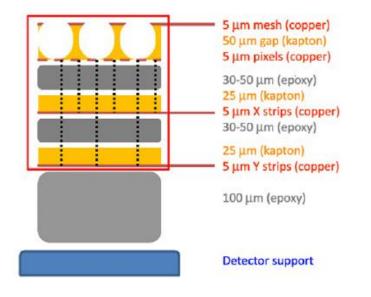

Three types of technologies:

- **Classical:** Mesh is mechanically fixed to the anode (CAST, ATLAS).
- Bulk: Mesh & anode in a sandwhich (COMPASS, T2K, CLAS-12, n_TOF, MIMAC...)
- **Microbulk:** Mesh & anode built in one piece by chemical processing (CAST & nTOF).



Micromegas-based TPCs

I. Giomataris et al., Nucl. Instr. Meth. A560 (2006) 405-408



6

F.J. Iguaz - HPTPC R&D in Spain for DM

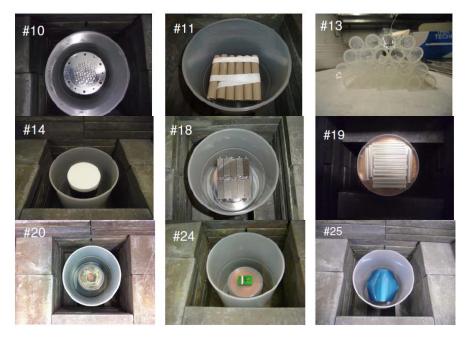
It is intrisic radiopure if only made of kapton & copper...

S. Cebrian et al., Astr . Part. 34 (2011) 354

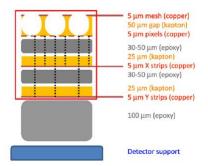
F.J. Iguaz - HPTPC R&D in Spain for DM

It is intrisic radiopure if only made of kapton & copper...

#	Material,Supplier	Method	Unit	$^{214}\mathrm{Bi}$	²⁰⁸ Tl
16	Microbulk Micromegas, CAST/CERN	BiPo-3	$\mu {\rm Bq/cm^2}$	< 0.134	< 0.035
17	Cu-kapton-Cu foil, CERN	BiPo-3	$\mu Bq/cm^2$	< 0.141	< 0.012
18	Kapton-epoxy foil, CERN	BiPo-3	$\mu { m Bq/cm^2}$	< 0.033	< 0.008
19	Vacrel foil, Saclay	BiPo-3	$\mu { m Bq/cm^2}$	< 0.032	< 0.013
20	Kapton-diamond foil, CERN	BiPo-3	$\mu \rm Bq/cm^2$	< 0.055	$<\!0.016$

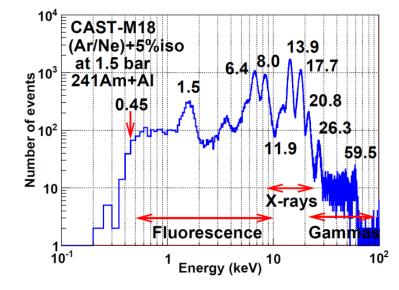

Much better than PMTs! Recent data by BiPo-3 may improve these values!

I.G. Irastorza et al., JCAP 1601 (2016) 033

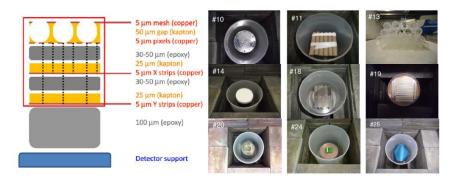

F.J. Iguaz - HPTPC R&D in Spain for DM

... and radiopurity control techniques can be applied.

F. Aznar *et al., JINST* **8** (2013) C11012 F.J. Iguaz *et al., Eur. Phys. J.* C**76** (2016) 529



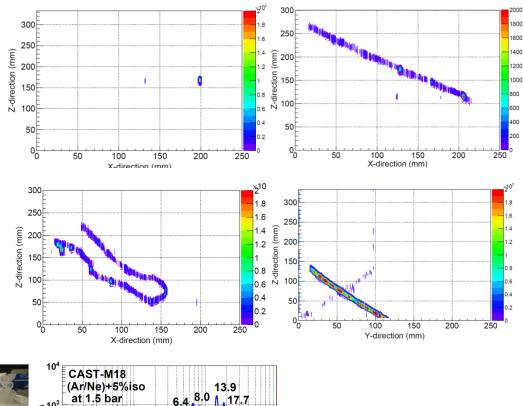
F.J. Iguaz - HPTPC R&D in Spain for DM



7

A low energy threshold (< 450 eV) is feasible.

S. Aune et al., JINST **9** (2014) P01001.



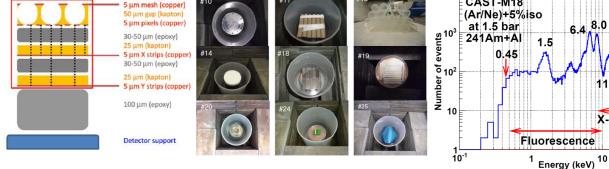
F.J. Iguaz - HPTPC R&D in Spain for DM

7

A rich topological information is available...

20.8

11.9

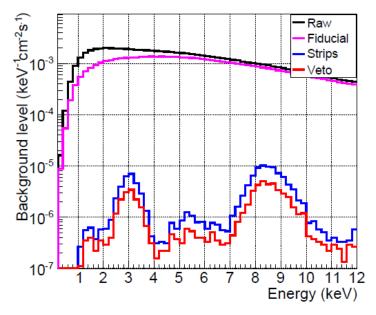

X-rays

26.3

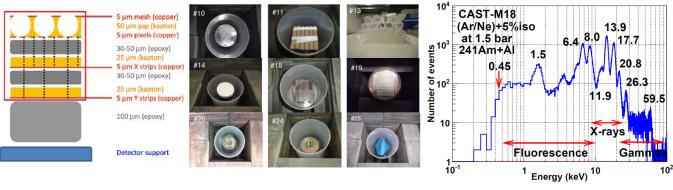
Gamm

59.5

10²

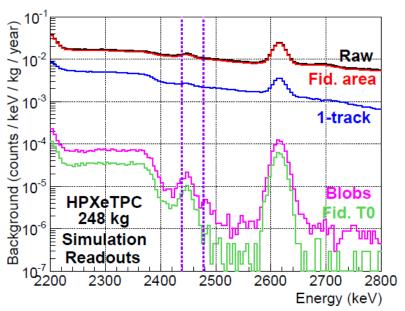


F.J. Iguaz - HPTPC R&D in Spain for DM

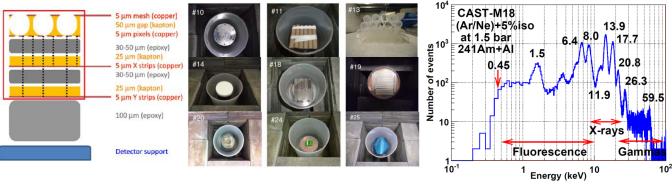

HPTPCs for Neutrinos - CERN, 9 Nov 2016

which has already been used in Axions Searches (CAST),

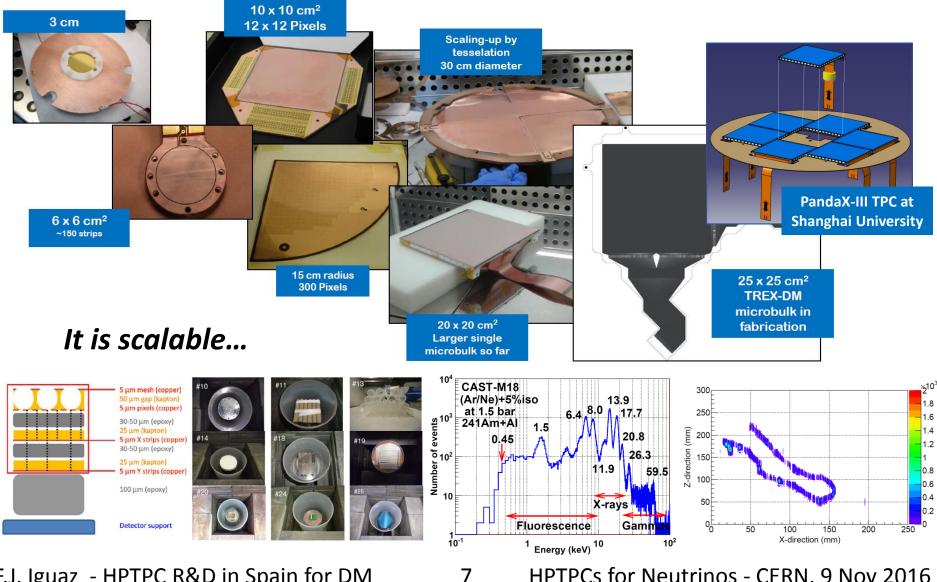
F. Aznar et al., JCAP 1512 (2015) 008



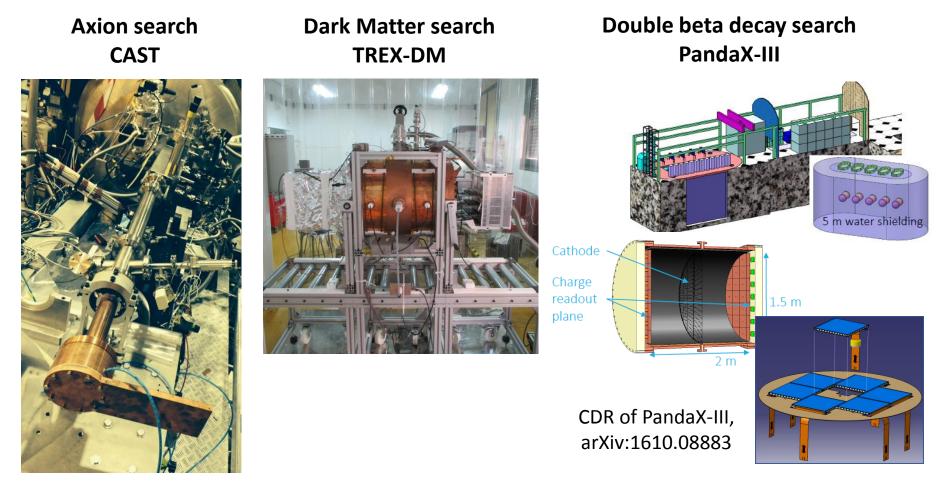
F.J. Iguaz - HPTPC R&D in Spain for DM



And may be used in future for Double-Beta Decay searches.


F.J. Iguaz - HPTPC R&D in Spain for DM

S. Cebrián *et al., J. Phys.* **G40** (2013) 125203. F.J. Iguaz *et al., arXiv:1609.09735.*



F.J. Iguaz - HPTPC R&D in Spain for DM

Micromegas results within T-REX

and it has been applied to:

F.J. Iguaz - HPTPC R&D in Spain for DM

TREX-DM

A low-background Micromegas-based TPC for low-mass WIMP detection

8

Proof of concept, not fully radiopure

- Built & commissioned at TREX lab.
- Screening of all components.
- Bulk MM tested in Ar+2%iso at HP.

Ready for installation at LSC after:

- Installation of radiopure components.
- Design & built of a shielding.
- Upgrade to auto-trigger electronics.

Expectations (real/optimal) at LSC:

- Threshold of 0.4/0.1 keVee.
- Background of 1.0/0.1 c keV⁻¹ kg⁻¹ day⁻¹.

F.J. Iguaz - HPTPC R&D in Spain for DM

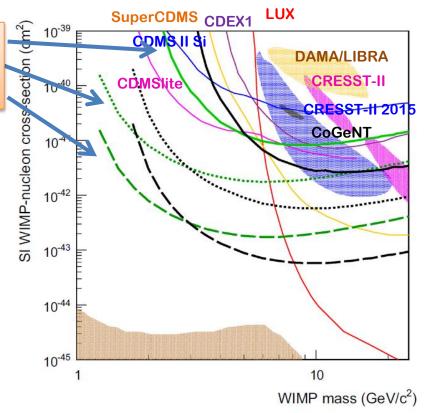
F.J. Iguaz et al., Eur. Phys. J. C76 (2016) 529

TREX-DM

A low-background Micromegas-based TPC for low-mass WIMP detection

8

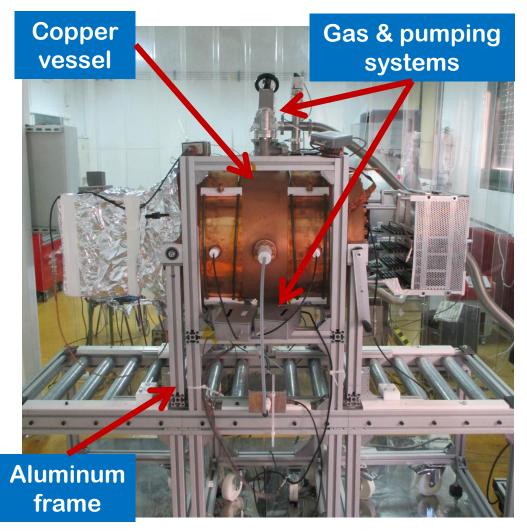
Proof of concept, not fully radiopure


- Built & commissioned a Th=0.4 B=10 Th=0.1 B=1
- Screening of all comport Th=0.1 B=0.1 exp x10
- Bulk MM tested in Ar+2%iso at HP.

Ready for installation at LSC after:

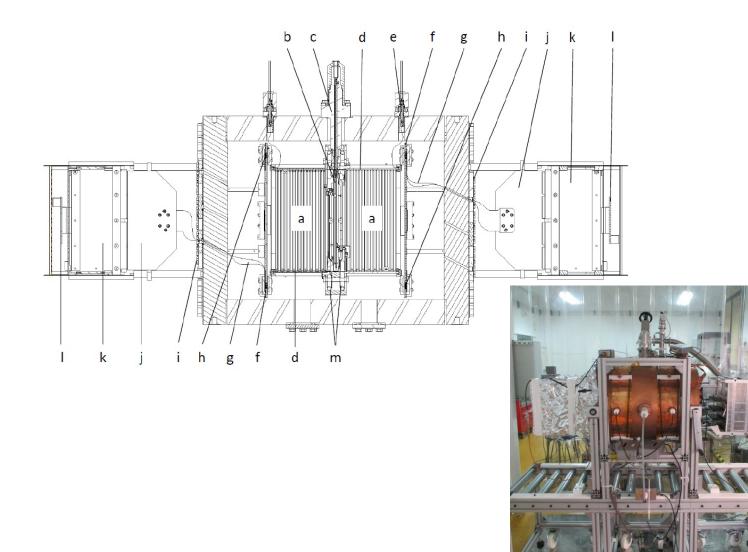
- Installation of radiopure components.
- Design & built of a shielding.
- Upgrade to auto-trigger electronics.

Expectations (real/optimal) at LSC:


- Threshold of 0.4/0.1 keVee.
- Background of 1.0/0.1 c keV⁻¹ kg⁻¹ day⁻¹.

F.J. Iguaz et al., Eur. Phys. J. C76 (2016) 529

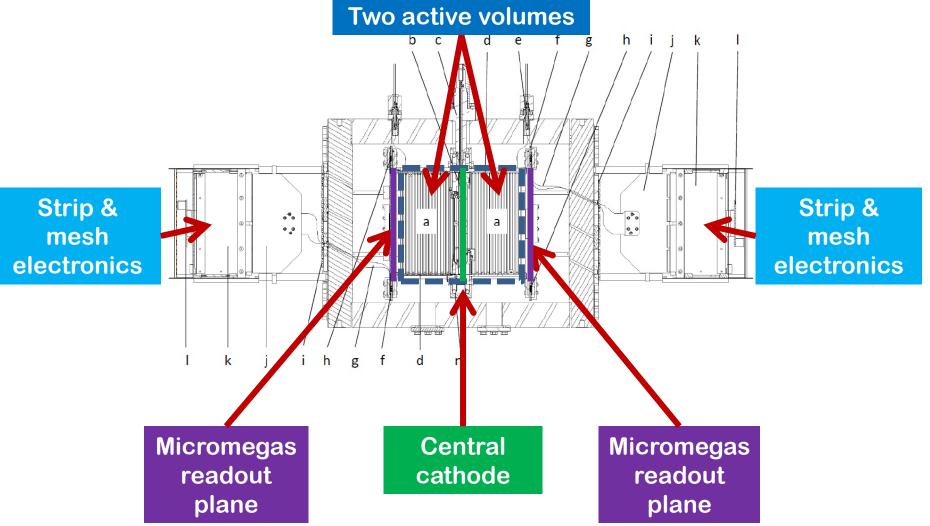
The TREX-DM detector outside



- Central sleeve & 2 flat end caps.
- Aluminum frame as support.
- Inside a clean flow tent.
- Equipped with a gas system, vacuum system & slow control.

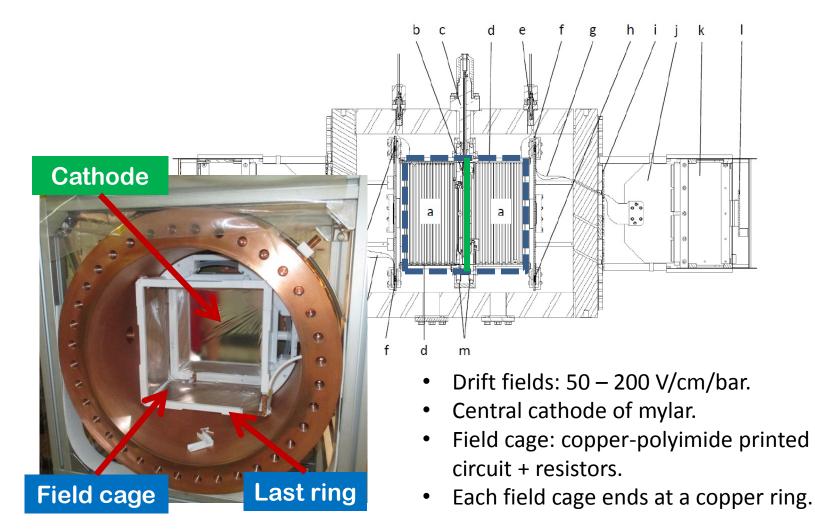
The TREX-DM detector inside

F.J. Iguaz - HPTPC R&D in Spain for DM

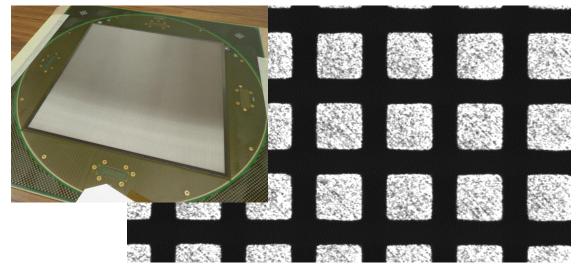

10

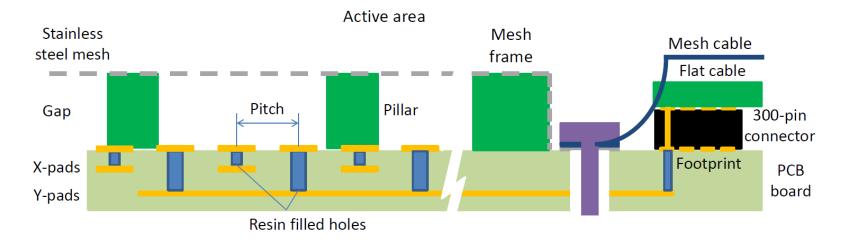
Universidad

Zaragoza


1547

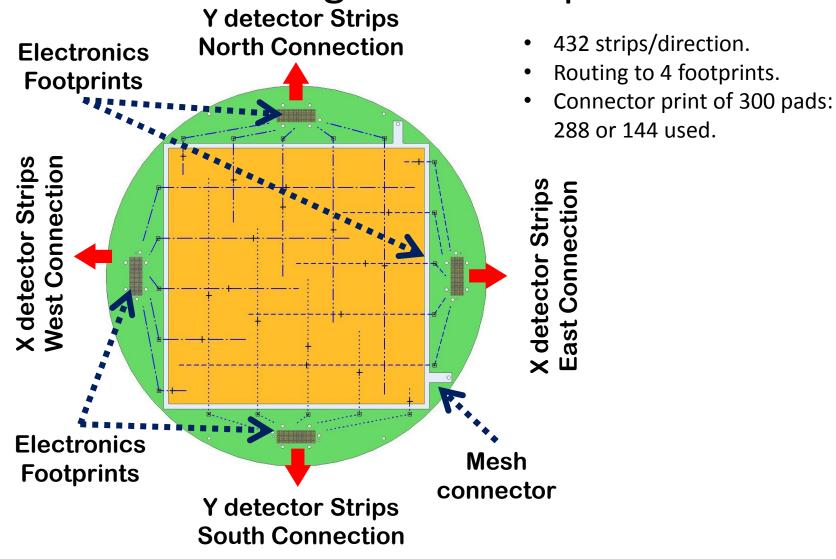
F.J. Iguaz - HPTPC R&D in Spain for DM 11 HPTPCs for Neutrinos - CERN, 9 Nov 2016


Drift cage


F.J. Iguaz - HPTPC R&D in Spain for DM

Micromegas readout planes

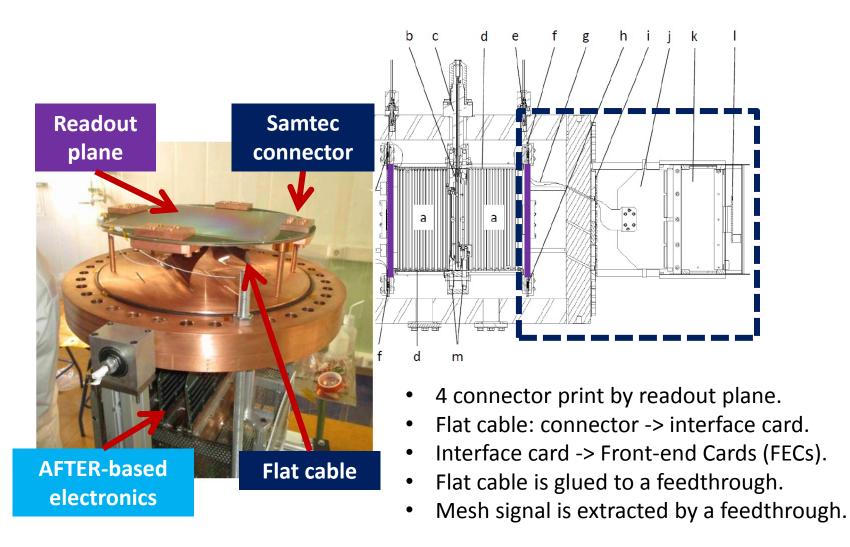
- Bulk @ IRFU/Saclay.
- PCB @ Somacis.
- Area: 25.2 x 25.2 cm².
- Squared pads 332 μm, pitch 583 μm.
- Interconnected to 432 strips/direction.



F.J. Iguaz - HPTPC R&D in Spain for DM

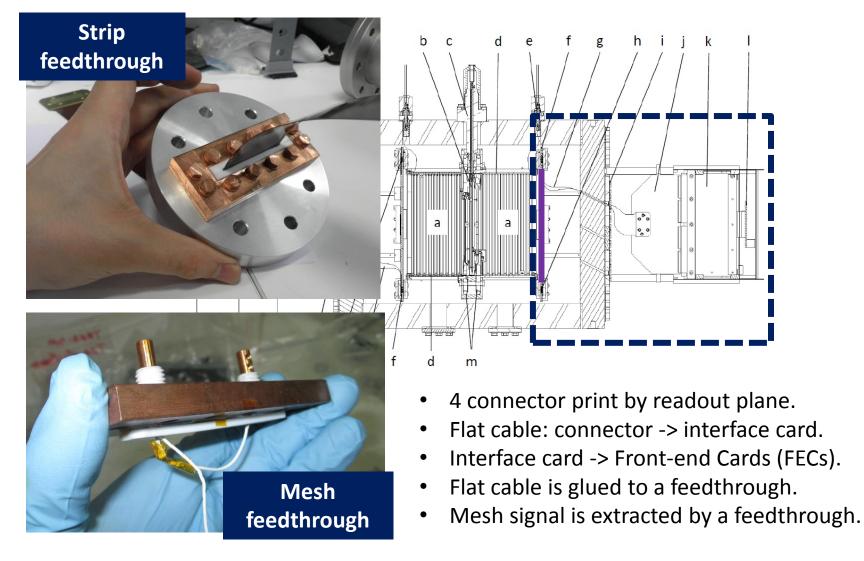
13

Micromegas readout planes

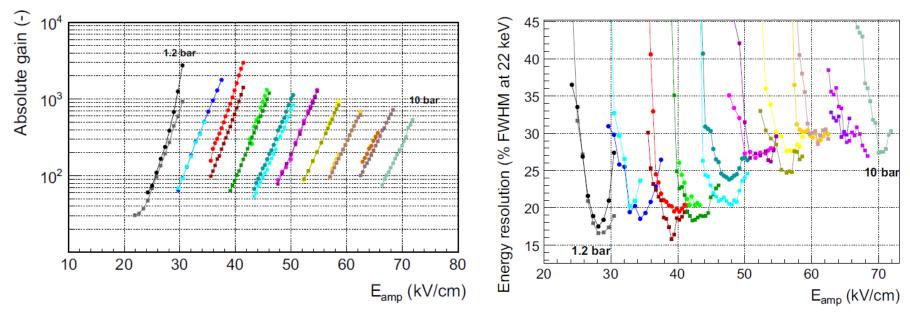


14

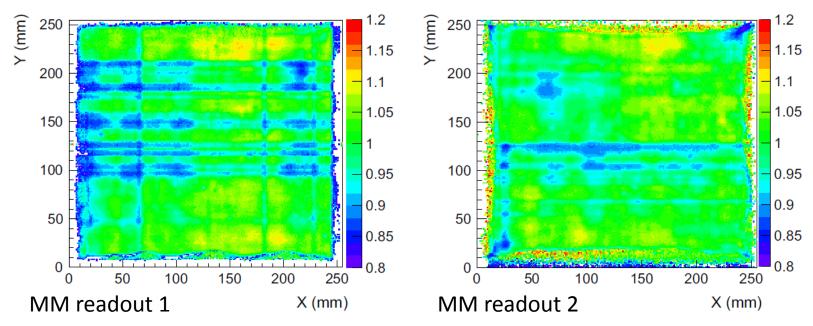
F.J. Iguaz - HPTPC R&D in Spain for DM


The signal extraction chain

F.J. Iguaz - HPTPC R&D in Spain for DM


The signal extraction chain

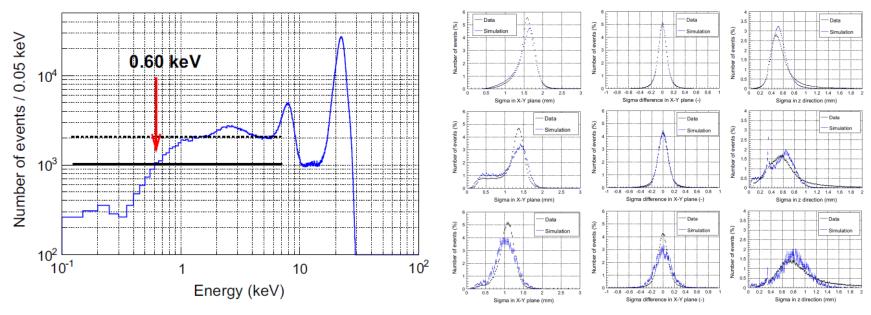
F.J. Iguaz - HPTPC R&D in Spain for DM


Results of the commissioning

- Characterization in Ar+2% iso @1-10 bar, using a ¹⁰⁹Cd source (22.1 keV x-rays).
 - Gain: 3 x 10³ (1.2 bar) -> 5 x 10² (10 bar).
 - Resolution: 16% FWHM -> 27% FWHM.
- Gain uniformity of readout planes: 10%.
- Energy threshold: **0.60 keVee** for a gain of 10³, limited by mesh trigger.
- Data used to validate the simulation of the detector signal response.

F.J. Iguaz - HPTPC R&D in Spain for DM 16 HPTPCs for Neutrinos - CERN, 9 Nov 2016

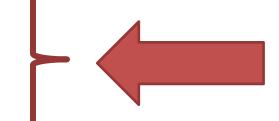
- Characterization in Ar+2% iso @1-10 bar, using a ¹⁰⁹Cd source (22.1 keV x-rays).
 - Gain: 3 x 10³ (1.2 bar) -> 5 x 10² (10 bar).
 - Resolution: 16% FWHM -> 27% FWHM.
- Gain uniformity of readout planes: 10%.


Universidad

- Energy threshold: **0.60 keVee** for a gain of 10³, limited by mesh trigger.
- Data used to validate the simulation of the detector signal response.

F.J. Iguaz - HPTPC R&D in Spain for DM 16 HPTPCs for Neutrinos - CERN, 9 Nov 2016

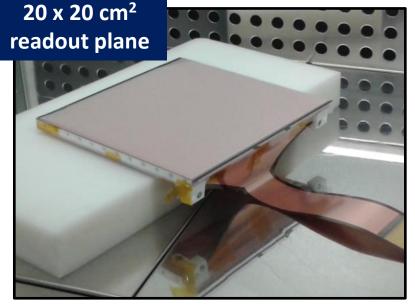
Results of the commissioning


- Characterization in Ar+2% iso @1-10 bar, using a ¹⁰⁹Cd source (22.1 keV x-rays).
 - Gain: 3 x 10³ (1.2 bar) -> 5 x 10² (10 bar).
 - Resolution: 16% FWHM -> 27% FWHM.
- Gain uniformity of readout planes: 10%.
- Energy threshold: **0.60 keVee** for a gain of 10³, limited by mesh trigger.
- Data used to validate the simulation of the detector signal response.

F.J. Iguaz - HPTPC R&D in Spain for DM 16 HPTPCs for Neutrinos - CERN, 9 Nov 2016

Upgrades for LSC setup

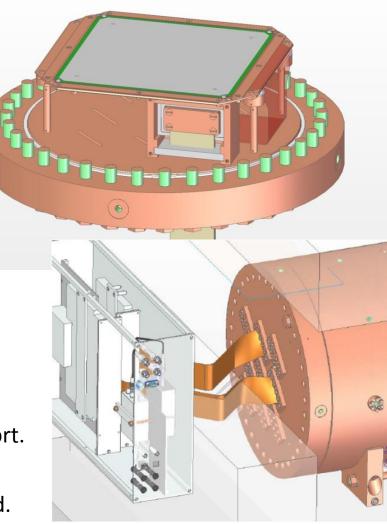
- The shielding & external support.
- The gas system.
- The calibration system.
- The readout planes.
- The electronics.
- The gas.



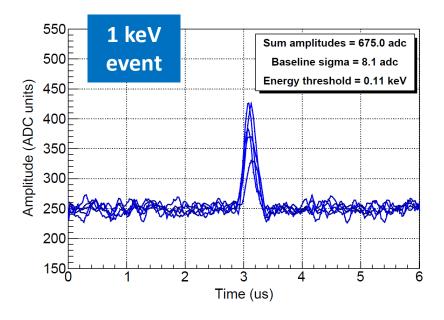
F.J. Iguaz - HPTPC R&D in Spain for DM 1

17

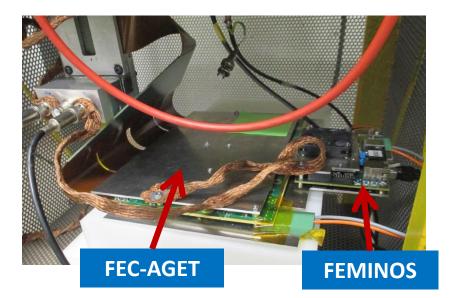
18


Universidad

Zaragoza

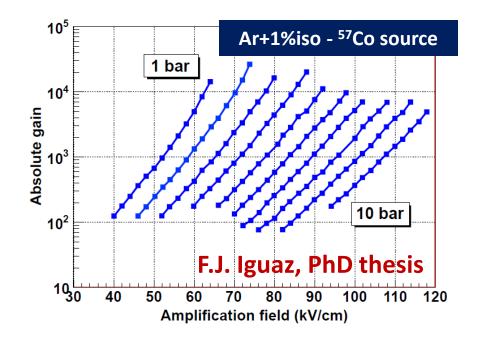

PandaX-III collaboration, arXiv:1610.08883

- Area = $25 \times 25 \text{ cm}^2$, pitch = 1 mm.
- Microbulk technology @ CERN.
- Radiopure materials: copper & polyimide.
- Readout glued on a radiopure copper support.
- Signals extracted via a flexible part.
- Flat cables are long enough to cross the lead.



Universidad

Zaragoza


- Auto-trigger capabilities for strips. Mesh signal won't be needed!
- Capacitance: strips ~0.2 nF, mesh ~6 nF.
- A factor ~10 lower energy threshold (0.1 keV) expected.
- Layout: front-end (FEC-AGET), FEM (FEMINOS) & trigger module (TCM).

More details at Denis Calvet's talk (*Electronics based on the T2K TPC design*)!

F.J. Iguaz - HPTPC R&D in Spain for DM 19 HPTPCs for Neutrinos - CERN, 9 Nov 2016

The gas

- The gas used at LSC must be non-flammable.
- We plan to characterize microbulk Micromegas readout planes in
 - Ar+1%iso at 1-10 bar.
 - Ne+2%iso at 1-10 bar.
- Unpublished results show that Ar+1% iso is good enough to work at High Pressure.

F.J. Iguaz - HPTPC R&D in Spain for DM 20 HPTPCs for Neutrinos - CERN, 9 Nov 2016

Conclusions

TREX-DM: a low-background Micromegas-based TPC for DM searches.

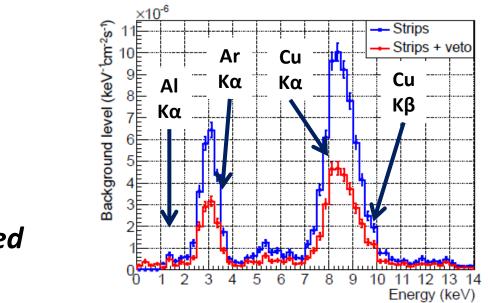
- Challenge: low energy threshold for a large area at High Pressure.
- Prospects: threshold ~0.4 keVee, background ~1.0 counts keV⁻¹ kg⁻¹ day⁻¹.
- Commissioning stage at T-REX lab: bulk MM in Ar+2% iso at HP.
- Going to LSC: fully radiopure setup, microbulk MM, auto-trigger electronics, shielding installation.
- Microbulk MM readouts to be tested in Ar+1%iso & Ne+2%iso at HP.

Conclusions

TREX-DM: a low-background Micromegas-based TPC for DM searches.

- Challenge: low energy threshold for a large area at High Pressure.
- Prospects: threshold ~0.4 keVee, background ~1.0 counts keV⁻¹ kg⁻¹ day⁻¹.
- Commissioning stage at T-REX lab: bulk MM in Ar+2% iso at HP.
- Going to LSC: fully radiopure setup, microbulk MM, auto-trigger electronics, shielding installation.
- Microbulk MM readouts to be tested in Ar+1%iso & Ne+2%iso at HP.

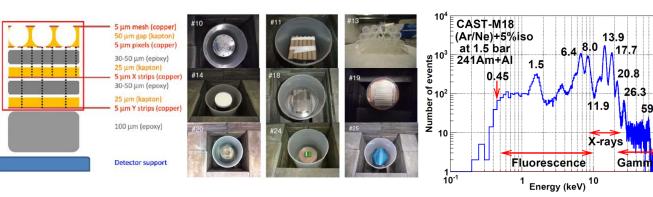
Thanks for your attention!


Back-up slides

F.J. Iguaz - HPTPC R&D in Spain for DM B1 HPTPCs for

Micromegas-based TPCs

B2



59.5

10²

which has already been used in Axions Searches (CAST).

F.J. Iguaz - HPTPC R&D in Spain for DM

I.G. Irastorza et al., JCAP 1601 (2016) 033

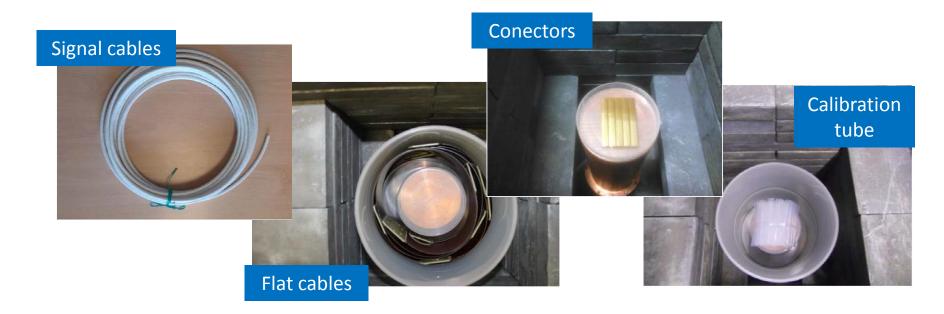
Radiopurity of microbulk Micromegas

A key feature for applications in Rear Event Searches.

- First measurement made in 2011 by a Ge detector, already better than PMTs.
- The limits obtained for ²¹⁴Bi & ²⁰⁸Tl isotopes by BiPo-3 experiment in 2016 are *a factor 100 better* than those set by Ge.
- Two new samples (x10 larger area) have been measured in BiPo-3.
 Preliminary limits are a factor 3 better!

Sample	²³² Th	²³⁵ U	²³⁸ U
Micromegas without mesh	4.6 ± 1.6	<6.2	<40.3
Microbulk-Micromegas	<9.3	<13.9	26.3 ± 13.9
Kapton-copper foil	<4.6 ^ª	<3.1 ^ª	<10.8
Copper-kapton-copper foil	<4.6 ^a	<3.1 ^a	<10.8
Hamamatsu R8520-06 PMT [30]	27.9 ± 9.3	-	<37.2

S. Cebrián et al., Astropart. Phys. **34** (2011) 354-359


Γ	#	Material,Supplier	Method	Unit	$^{214}\mathrm{Bi}$	208 Tl]
	16	Microbulk Micromegas, $CAST/CERN$	BiPo-3	$\mu { m Bq/cm^2}$	< 0.134	< 0.035	
	17	Cu-kapton-Cu foil, CERN	BiPo-3	$\mu Bq/cm^2$	< 0.141	< 0.012	I.G. Irastorza et al.,
	18	Kapton-epoxy foil, CERN	BiPo-3	$\mu { m Bq/cm^2}$	< 0.033	< 0.008	<i>JCAP</i> 01 (2016) 033.
	19	Vacrel foil, Saclay	BiPo-3	$\mu { m Bq/cm^2}$	< 0.032	< 0.013	
	20	Kapton-diamond foil, CERN	BiPo-3	$\mu \rm Bq/cm^2$	< 0.055	$<\!0.016$	

F.J. Iguaz - HPTPC R&D in Spain for DM

Material screening program

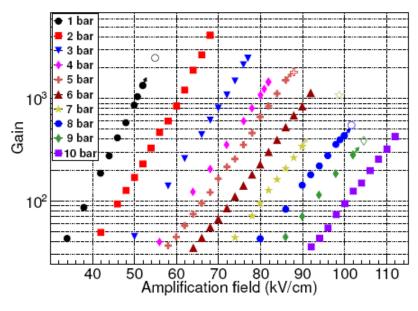
- The radioactivity measurement of all relevant components of the experiment: shielding, vessel, calibration system, field cage, electronics & detectors.
- Mainly based on a germanium gamma-ray spectrometry at LSC.
- Found radiopure versions of the micromegas detectors, flat cables and conectors. They will be installed in the final version for LSC.
- More details: F. Aznar *et al., JINST* **8** (2013) C11012 & JCAP01(2016)033.

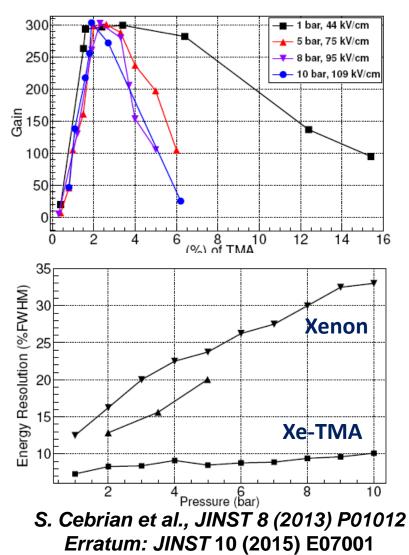
F.J. Iguaz - HPTPC R&D in Spain for DM B4 HPTPCs for Neutrinos - CERN, 9 Nov 2016

Material screening program

#	Material, Supplier	Technique	Unit	²³⁸ U	226 Ra	²³² Th	²²⁸ Th	235U	⁴⁰ K	^{60}Co
1	Pb. Mifer	GDMS	mBq/kg	<1.2		< 0.41		_	0.31	
2	Pb, Mifer	GDMS	mBq/kg	0.33		0.10			1.2	
3	Cu, Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020			1.2	
4	Cu, hot rolled, Luvata	GDMS	mBq/kg	< 0.012		< 0.0041			0.061	
5	Cu, cold rolled, Luvata	GDMS	mBq/kg	< 0.012		< 0.0041			0.091	
6	Cu, Luvata	Ge	mBq/kg	0.012	<7.4	<0.8	<4.3		<18	< 0.8
7	Kapton-Cu, LabCircuits	Ge	$\mu Bq/cm^2$	<160	<14	<12	<8	<2	<40	<2
8	Teflon, Sanmetal	Ge	$\mu Bq/cm$ mBq/kg	<157	<4.1	<6.6	<4.8	<4.8	<19	<1.2
9	Teflon tube, RS	Ge	mBq/kg	<943	<21	<37	<31	<19	510 ± 170	<7.6
10	Stycast, Henkel	Ge	mBq/kg	$(3.7\pm1.4)10^3$	52 ± 10	44 ± 12	38 ± 9	<15	$(0.32\pm0.11)10^3$	<5.5
10	Epoxy Hysol, Henkel	Ge	mBq/kg	<273	<16	<20	<16		<83	<4.2
12	SMD resistor, Farnell	Ge	mBq/pc	2.3 ± 1.0	0.16 ± 0.03	0.30 ± 0.06	0.30 ± 0.05	< 0.05	0.19 ± 0.08	<0.02
13	SM5D resistor, Finechem	Ge	mBq/pc mBq/pc	0.4 ± 0.2	0.022 ± 0.007	< 0.023	< 0.016	0.012 ± 0.005	0.13 ± 0.03 0.17 ± 0.07	< 0.02
14	CF40 flange, Pfeiffer	Ge	mBq/bc mBq/kg	0.4±0.2	14.3 ± 2.8	9.7 ± 2.3	16.2 ± 3.9	3.2 ± 1.1	<17	11.3 ± 2.7
	0,		10	< 77	9.2±1.1	19.6±3.6	18.5 ± 2.2	1.5±0.4	12.2±4.1	
15	Connectors, Samtec	Ge	mBq/pc	<77						<0.6
16	Connectors, Panasonic	Ge	mBq/pc	<42	6.0±0.9	9.5±1.7	9.4 ± 1.4	< 0.95	4.1 ± 1.5	<0.2
17 18	Connectors, Fujipoly	Ge Ge	mBq/pc	<25 <370	$4.45{\pm}0.65$ $101{\pm}13$	1.15 ± 0.35 165 ± 29	0.80 ± 0.19 164 ± 23		7.3 ± 2.6 80 ± 25	< 0.1 < 5
18	Flat cable, Somacis		mBq/pc	$< 1.5 \ 10^3$	101 ± 13 123 ± 17	165 ± 29 225 ± 40			80 ± 25 112 ± 40	-
	Flat cable (rigid), Somacis	Ge	mBq/pc		(3.8)		198 ± 29	<1.0		<5.8
$\frac{20}{21}$	Flat cable (flexible), Somacis Flat cable, Somacis	Ge Ge	mBq/pc mBq/pc	<102 <45	<3.8 <1.7	<4.0 <1.8	< 1.4 < 0.61	<1.8 <0.77	$<\!$	$< 0.7 \\ < 0.3$
$\frac{21}{22}$	Flat cable, Somacis	Ge	-/ -	<14	<1.7 0.44 \pm 0.12	< 1.8	< 0.61	<0.19	< 0.0 1.8 ± 0.7	<0.3 <0.09
22	RG58 cable, Pro-Power	Ge	mBq/pc	< 14 (2.2 ± 0.9)10 ³	$(0.9\pm0.1)10^3$	< 0.55 40 ± 12	< 0.19 29 ± 8	<212	1.8 ± 0.7 108 ± 43	< 9.2
$\frac{23}{24}$	Teflon cable, Druflon	Ge	mBq/kg	$(2.2\pm0.9)10^{-1}$	$(0.9\pm0.1)10^{-1}$ <2.2	40±12 <3.7	< 1.7	<1.4	21.6 ± 7.4	< 9.2
$\frac{24}{25}$	Teflon cable, Axon	Ge Ge	mBq/kg mBq/kg	$< 104 \\ < 650$	<2.2 <24	<3.7 <15	< 1.7 < 9.9	<1.4 <7.9	21.6 ± 7.4 163 ± 55	<0.7 <4.3
$\frac{25}{26}$	Kapton tape, Tesa	Ge	mBq/kg mBq/kg	$< 1.7 \ 10^3$	<34	<40	<22	<14	$(0.46\pm0.15)10^3$	<4.5 <10
			-, -	-		-		<14		-
27	FR4 PCB, Somacis	Ge	Bq/kg	31±11	15.3 ± 2.1	25.5 ± 4.4	22.5 ± 3.5	-0 80	15.5 ± 4.7	< 0.16
28	PTFE circuit, LabCircuits	Ge	Bq/kg	<36	4.7 ± 0.6	5.0 ± 1.1	6.2 ± 0.9	< 0.50	4.5 ± 1.5	<0.16
29	Cuflon, Crane Polyflon	Ge	mBq/kg	<103	<3.7	<3.6	<1.4	<1.8	<13	<0.6
30	Classical Micromegas, CAST	Ge	$\mu Bq/cm^2$	<40		4.6 ± 1.6		<6.2	<46	<3.1
31	Microbulk Micromegas,CAST	Ge	$\mu Bq/cm^2$	26 ± 14		< 9.3		<14	57 ± 25	<3.1
32	Kapton-Cu foil, CERN	Ge	$\mu Bq/cm^2$	<11		<4.6		<3.1	<7.7	<1.6
33	Cu-kapton-Cu foil, CERN	Ge	$\mu Bq/cm^2$	<11		<4.6		<3.1	<7.7	<1.6
34	Vacrel, Saclay	Ge	$\mu Bq/cm^2$	<19	< 0.61	< 0.63	< 0.72	< 0.19	4.6 ± 1.9	< 0.10

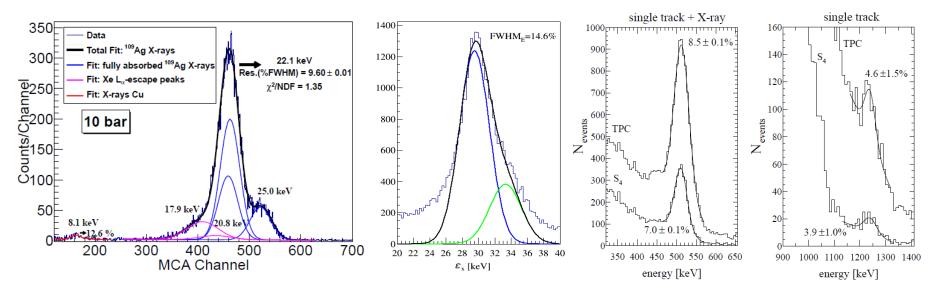
F.J. Iguaz et al., *EPJC* **76** (2016) 529


F.J. Iguaz - HPTPC R&D in Spain for DM


Micromegas TPCs in Xe-TMA at HP

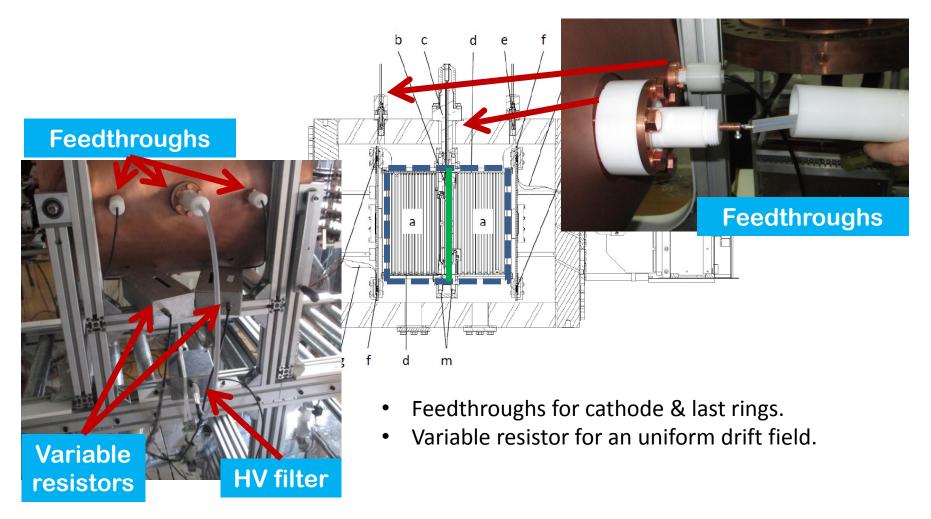
B6

- Microbulk micromegas. 50 µm gap.
- Xenon-TMA mixtures.
- ¹⁰⁹Cd source (22.1 keV x-rays).
- Best performance for 1.% TMA.
- Max, gain: 2x10³ (5 x 10²) at 1 (10) bar.
- Energy resolution: 7.3 (9.6) % FWHM at 22.1 keV for 1 (10) bar.



F.J. Iguaz - HPTPC R&D in Spain for DM

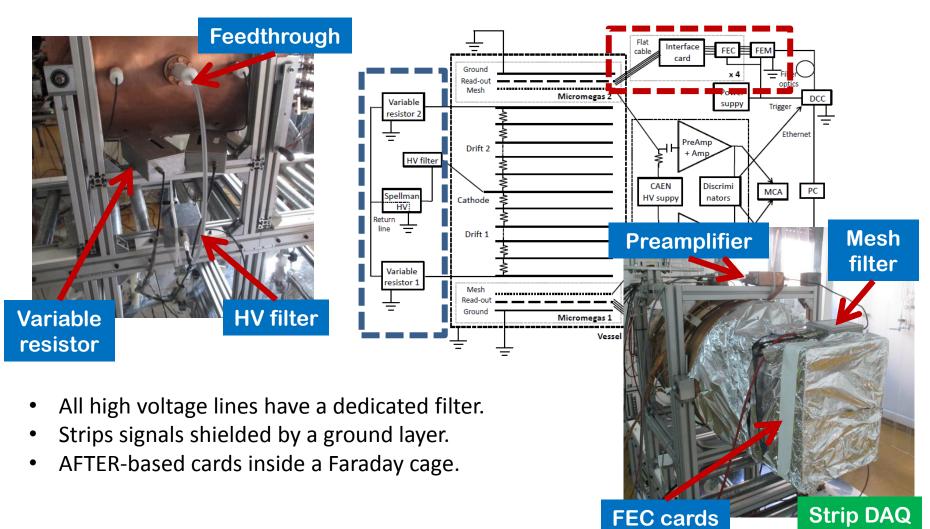
Energy resolution – realistic (ext. tracks)


Setup:	ıp: Small		Large	Large	
Energy:	X-ray (22 keV)	X-ray (30 keV)	γ (511 keV)	γ (1275 keV)	
∆E (FWHM):	~10%	~15%	~7%	~4%	
Δ Ε_{FWHM}@ Q ββ	~1%	1.5%	3%	3%	

* Always 10 bar, Xe+TMA (~1%)

F.J. Iguaz - HPTPC R&D in Spain for DM

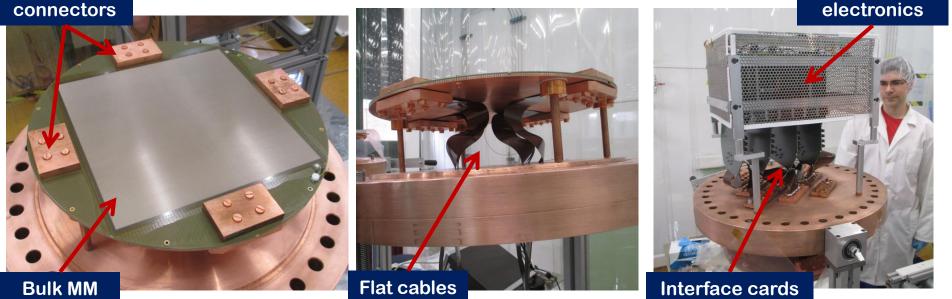
Drift cage & mechanical support



B8

F.J. Iguaz - HPTPC R&D in Spain for DM

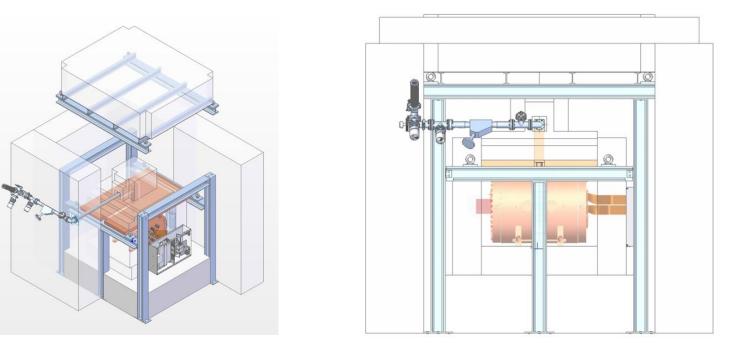
Grounding & filtering noise


F.J. Iguaz - HPTPC R&D in Spain for DM

The Micromegas readouts in detail

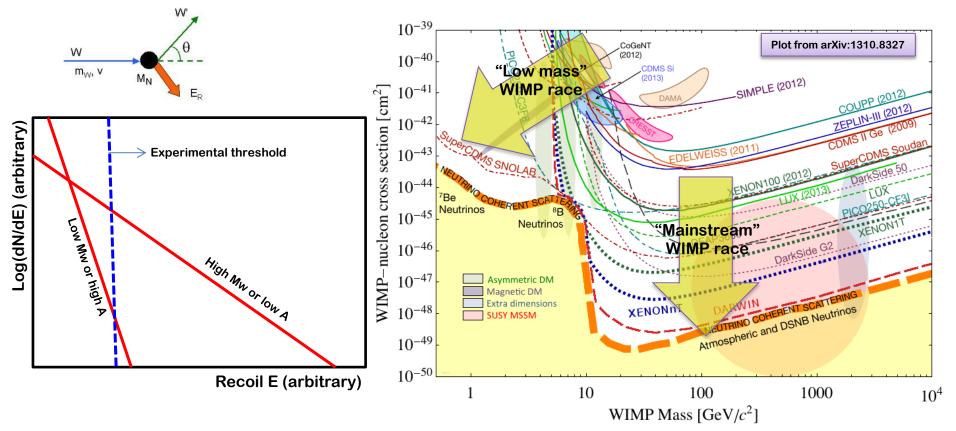
AFTER-based

Samtec connectors


- 25 x 25 cm² bulk Micromegas, 0.6 mm pitch, 128 μm gap.
- Extraction: 4 flat cables + 300-pin Samtec connectors.
- A small shielding included too: 1 cm copper + 1 cm lead.
- The interface card links a flat cable to a FEC. Short-cuts can be removed by jumpers.

Many thanks to IRFU/SEDI-Micromegas workshop!!!

F.J. Iguaz - HPTPC R&D in Spain for DM B10 HPTPCs for Neutrinos - CERN, 9 Nov 2016

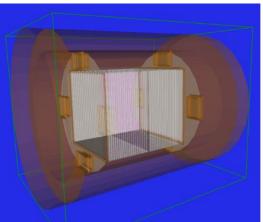

Support structure & shielding

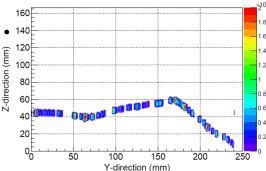
- Gammas & electronics: 20 cm lead shielding + steel structure.
- **Neutrons**: 40 cm of polyethylene or borated water.
- **Radon**: Rn-free air (or N_2) flush + polycarbonate box / plastic bag.
- Replacement of gas & vacuum components by copper-based ones.
- One lateral bore to extract signals, gas & vacuum systems.

Low mass WIMPs

B12

- Mainstream experiments not adequate for the low WIMP mass region
- Need new specific WIMP experiments:
 - Low A target material.
 - Low intrinsic energy threshold.


F.J. Iguaz - HPTPC R&D in Spain for DM

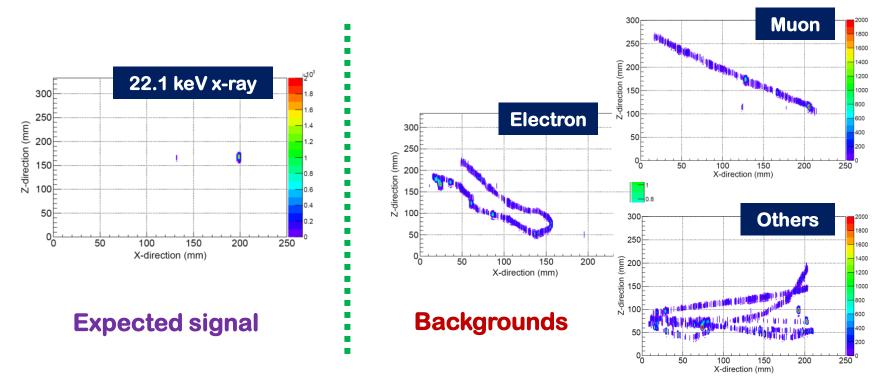


Geant4

Simulation of the detector response

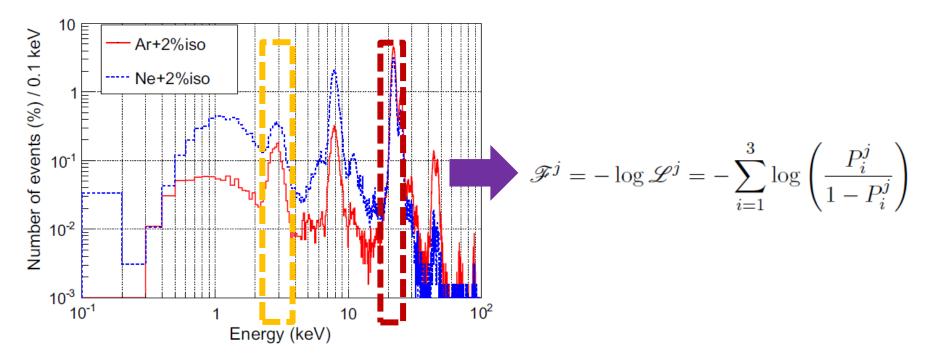
- Physics processes.
- Primary electrons.
- Diffusion effects.
- Charge amplification.
- X-Y readout.
- DAQ response.

The resulting data has the same format as the DAQ data.


F.J. Iguaz - HPTPC R&D in Spain for DM B13 HPTPCs for N

HPTPCs for Neutrinos - CERN, 9 Nov 2016

Expected signal & analysis


- Expected signal by DM: few microns track -> point-like event.
- Analysis to discriminate point-like events from complex topologies.
- Observables: event widths (XY & Z).
- Likelihood functions based on 3 & 22 keV lines of ¹⁰⁹Cd source.

Expected signal & analysis

- Expected signal by DM: few microns track -> point-like event.
- Analysis to discriminate point-like events from complex topologies.
- Observables: event widths (XY & Z).
- Likelihood functions based on 3 & 22 keV lines of ¹⁰⁹Cd source.

Status of background model

Table 5 Activities and estimated background levels (in keV⁻¹ kg⁻¹ day⁻¹) in the RoI (2-7 keV) of the different components of the TREX-DM experiment for an argon- and neon-isobutane mixture at 10 bar, using the analysis described in the text. The numbers with # at reference refer to Table 1. Upper limits of activities are given at 95 % C.L. In the specific case of connectors, the ²³⁸U limit has been used for the upper part of the chain, while the ²²⁶Ra value has been used for the lower part. The statistical error of these values is 5 %, while the systematic error includes a 30 % uncertainty associated to the measurement of the component's activity, a 60 % due to the simulation of the detector response and a 25 % for the fiducial efficiency of the analysis. For each component, the isotopes that gives the main contribution to background level have been specified for discussion purposes

Component	Refs.	nt Refs. Radioactive isotopes					Background level		Main contr.		
			Unit	²³² Th	²³⁸ U	⁴⁰ K	⁶⁰ Co	Others	Argon	Neon	
Muon flux	[77]	s ⁻¹ m ⁻²					5×10^{-3}	0.019	0.029	_	
Vessel	#4	µBq/kg	<4	<12	< 6 1			< 0.079	< 0.093	238 U	
Connectors	#17	mBq /pc	1.2	<25	7.3	<0.1	²²⁶ Ra: 4.5	0.61	0.90	²³² Th, ²³⁸ U	
Field cage	[78]	μ.Bq/kg	<1.2	<9.7	<10.0			< 0.00096	< 0.0012	²³⁸ U	
Cathode	#4	µBq/kg	<4	<12	< 6 1			< 0.0042	< 0.0046	²³² Th, ²³⁸ U	
Readouts	[32,64]	nBq/cm ²	<120	<110	6×10^{4}	<3000		3.35	3.34	⁴⁰ K, ⁶⁰ Co	
Target	[79]	mBq/kg					³⁹ Ar: 0.73	0.084	-	-	
Total backgroun	d level							4.15	4.43		

F. J. Iguaz et al, EPJC 76 (2016) 529

Table 5: Estimated background level in keV⁻¹ kg⁻¹ day⁻¹ in absence of shielding generated by different external components, a possible shielding against it and final level. Background levels have a statistical error less than 5% and its error is mainly dominated by the measurement error of the component's activity.

Component	Reference	Level (No shielding)	Shielding	Final level
External gamma flux	[95]	$1.1 imes 10^3$	20 cm lead	3.2×10^{-2}
AGET-based electronics	Table 3, #27	$4.3 imes 10^2$	20 cm lead	$1.2 imes 10^{-3}$
LSC rock neutrons	[99]	$4.9 imes10^{-1}$	40 cm polyethylene	$10^{-5}?$
Lead shielding (No ^{210}Pb)	Table 3, #2	$8.2 imes10^{-2}$	-	-

TREX-DM LoI to LSC SC (April 2016)

F.J. Iguaz - HPTPC R&D in Spain for DM