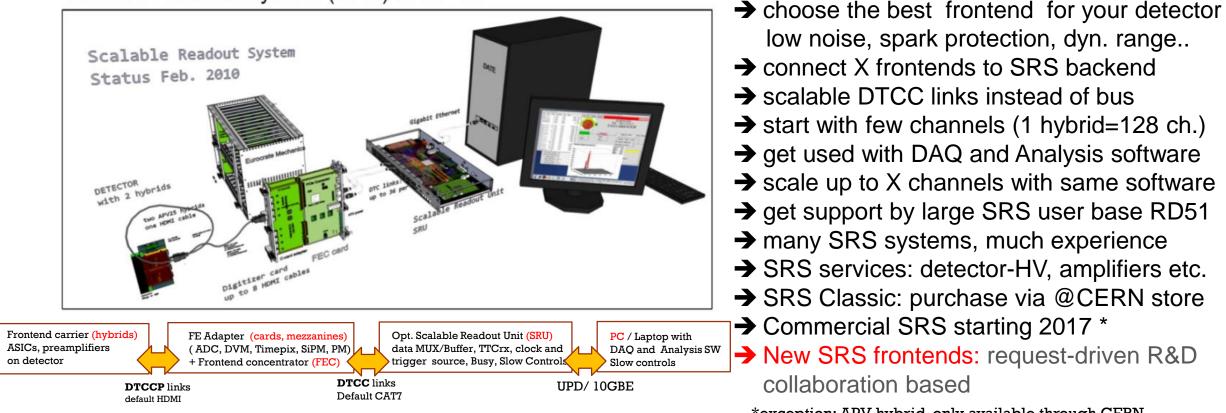


SRS was developed by RD51 collaboration for R&D on MPGD gas detectors

Collaborating SRS teams and users in 2016

MPGDs @ GDD-lab CERN, Photon detectors @ NEXT coll., Muon Tomografy @FIT, MICROMegas @ ATLAS MAMMA, DTC links and SRU@ ALICE DCAL, GEMs @ FTBF Coll., Timepix-SRS for ILC-TPC test@Bonn Univ,, GEM stack readout @BNL, GEMs@ CMS GEM collab, optical Readout@ TOTEM, GEM detectors @ PRad Coll., Neutron detectors@ ESS Brightness, Large surface MUST detector @ LSBB, VMM frontend for FOCAL E-PAD@ Univ. Tsukuba, GEMs for CP-Violation @CAPP, ... and many more

Workshop on Neutrino Near Detectors based on gas TPCs, Nov 2016, CERN Geneva

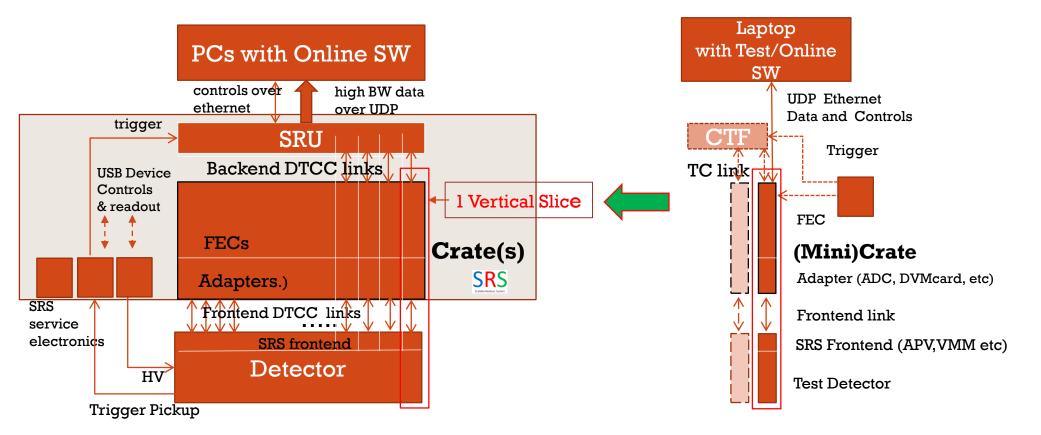

Scalable Readout System

SRS CONCEPT (SINCE 2009)

Scalable Readout system (SRS) of MPGD

low noise, spark protection, dyn. range.. → connect X frontends to SRS backend → scalable DTCC links instead of bus \rightarrow start with few channels (1 hybrid=128 ch.) → get used with DAQ and Analysis software → scale up to X channels with same software → get support by large SRS user base RD51 → many SRS systems, much experience → SRS services: detector-HV, amplifiers etc. → SRS Classic: purchase via @CERN store → Commercial SRS starting 2017 * → New SRS frontends: request-driven R&D collaboration based

*exception: APV hybrid, only available through CERN

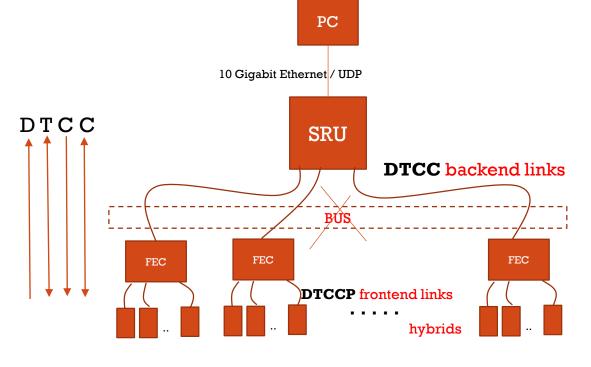


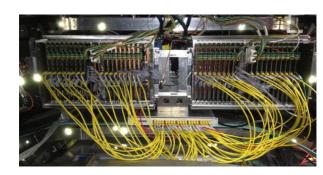
SCALABLE READOUT ARCHITECTURE

Full SRS: stacks of vertical-slices

Minimal SRS: 1 or 2 vertical slices

Hans.Muller@cern.ch





xTCx link flavors in use so far

- DTC Data+Trigger+Clock (over CAT7, SRU-FEE) 2009
- DTCCP Data+ Trigger+ Clock +Control + Power (over HMDI*, FEC-Frontend) 2010
- TC Trigger + Clock (over CAT7, CTF FEC) 2010
- DTCC Data +Trigger+ Clock +Control (over CAT7, SRU FEC) 2011
- DTCCO Data+ Trigger+ Clock+ Control over Optical fibre (planned, 2017)

ALICE DCal: DTC links over CAT7 from 40 FEE to 1 SRU

xTCx links make SRS scalable

LINK scalability features vs. parallel Bus

- Data in parallel over p-p links =>Higher BW & Trigger rates
- point-point controlled impedance
 > very high bitrates & lower error rates
- overcome bus length limit
 => single point failures = non fatal
- less wear-out of contacts
 => more reliable, less cost

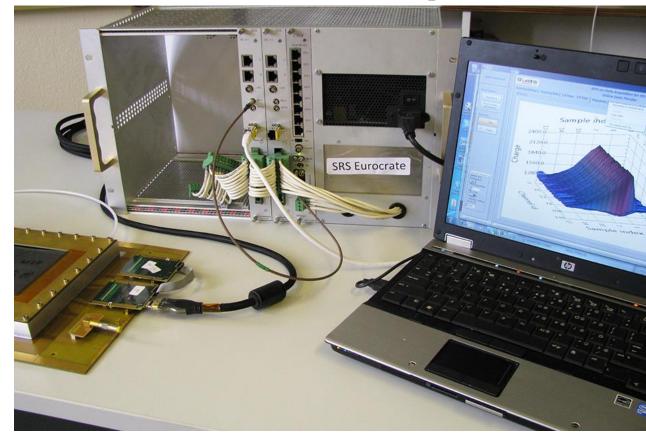

* copper or fibre

TABLE-TOP SRS

Powered SRS crate with FEC / Adapter combo

Laptop connected via Ethernet cable to FEC

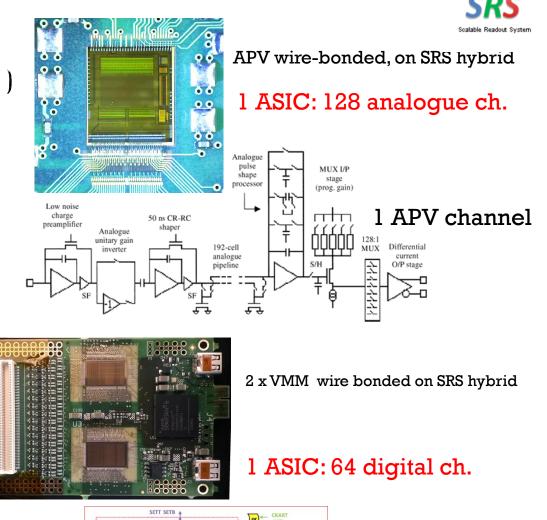
Online Readout systems DATE, and/or Labview SRS

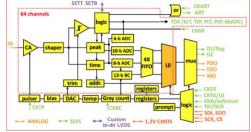
27/10/2016

Detector with APV hybrids

Readout & power via HDMI link

SCALABILITY (A. OVER TYPES OF FRONTEND)


-general-purpose SRS:


- APV frontend = 128 analogue ch. on hybrid
- VMM frontend= 128 digital ch. on hybrid

-experiment -specific SRS:

- SiPM and PM adapter (NEXT)
- Octal Timepix-2 adapter (Univ. Bonn)

Example of different frontends combined in a single RO system

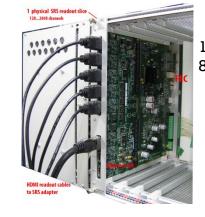
l VMM channel

Hans.Muller@cern.ch Work

Workshop on Neutrino Near Detectors based on gas TPCs, Nov 2016, CERN Geneva

27/10/2016

SCALABILITY (B. # CHANNELS)


SRS channel unit = 1 hybrid 128 channels

DTCCP readout cable unit = 256 channels

FEC Frontend concentrator unit = 2k ch.

Multi-FEC system with SRU = 4k...16 k ch.

Multi-Crate with SRU(s) > 16k ch

3 FECs and 1 CTF in Eurocra

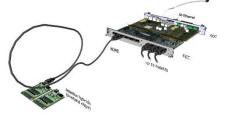
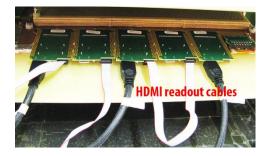
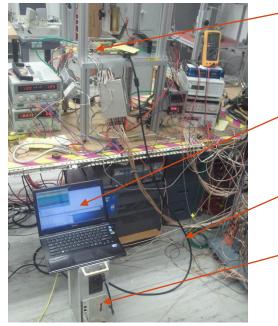




Table-top minimal SRS system

1 ADC adapter card + 1 FEC 8 HDMI ports

> Frontend Hybrids along Detctor frame

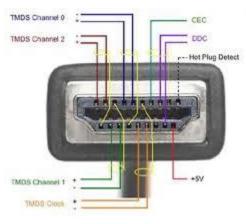
SRS slices (FEC+Adapter) in Euocrate with SRU below



FRONTEND LINKS (DTCCP)

HDMI* cables A-D (micro) up 5m HDMI cables A-A coupled to A-D up 25m

Photo: SRS test with RCDAQ at BNL



GEM detector with SRS APV hybrid, powered over HDMI

Laptop with RCDAQ

DTCC link HDMI A-A

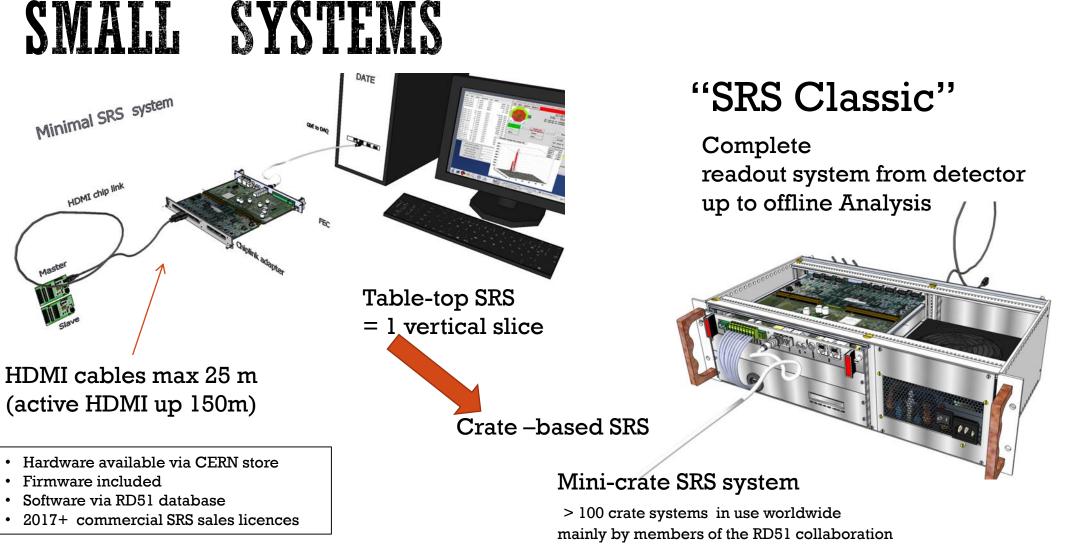
SRS Minicrate

5m HDMI standard A to micro (D)

NEW (tests in preparation)

- active HDMI copper A-A + A-D max 50 m
- active HMDI fibre A-A + A-D max 150 m

Commercial 100m active, optical HDMI cable


 \star we do NOT use HDMI protocols

Workshop on Neutrino Near Detectors based on gas TPCs, Nov 2016, CERN Geneva

27/10/2016

SRS FRONTENDS

SRS system Hardware

- APV25 (128 ch, analog) @ CERN store, standard FE for RD51
- VFAT (64 ch, digital) CMS/Totem -> prototype only
- Beetle (128 ch, anal +digital) -> prototype only
- SiPM and PM frontend @ UPV Valencia for NEXT
- VMM (128 ch, digital+ ZS) @CERN -> testing RD51/ESS
- GEMROC (64 ch , digital) in prep @ AGH and EicSys
- Timepix R&D for ILC TPC @ Bonn Univ. Proto system

SRS Online SW (via UDP)

- DATE (= default RD51)
- MMDAQ (ATLAS MM)
- CODA (PRad)
- RCDAQ (BNL/RHIC)
- Labview SRS (test systems)

FEC cards (CERN store + commercial)

- analogue adapter (16 x ADC 12 bit) (CERN store + commercial)
- digital adapter for VMM frontend (commercial)
- Mini-crates up 4k channels (CERN store)
- Eurocrates (REV2) up 16 k channels (commercial)
- ATCA crates, RTM cards 10 GBE, SFP (commercial)
- ATCA blades (2x LX240) (commercial)
- ATCA mezzanines (ADC, 6x12fibre ribbon) commercial, CDT (UPV)
- CTF clock-trigger fanout (inhouse-> commercial)
- Timepix adapter 6U card (Bonn Univ, prototype)
- Optocard VFAT 6U card (Totem)
- High Voltage for MPGD's AVD NIM (in prep. -> commercial)
- SRU LX240, 40xDTCC, NIM, 10GBE, 4x SFP (inhouse-> commercial)
- APIC preamp-shaper, battery box (finalized -> commercial)
- Femto online current measurement over 10 decades (in prepar.)

Slow controls (via IP)

- SDC (Scalable Detector Controls)
- scripts via Linux/DATE
- Labview (for testing)

Addressing

Workshop on Neutrino Near Detectors based on gas TPCs, Nov	2016 , CERN Geneva
--	--------------------

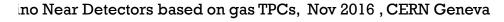
FRONTEND LINK ADAPTERS

- ADC and DVM cards with HDMI ports
- HDMI and SFP mezzanines (ATCA)
- Optical ribbon mezzanines (ATCA)

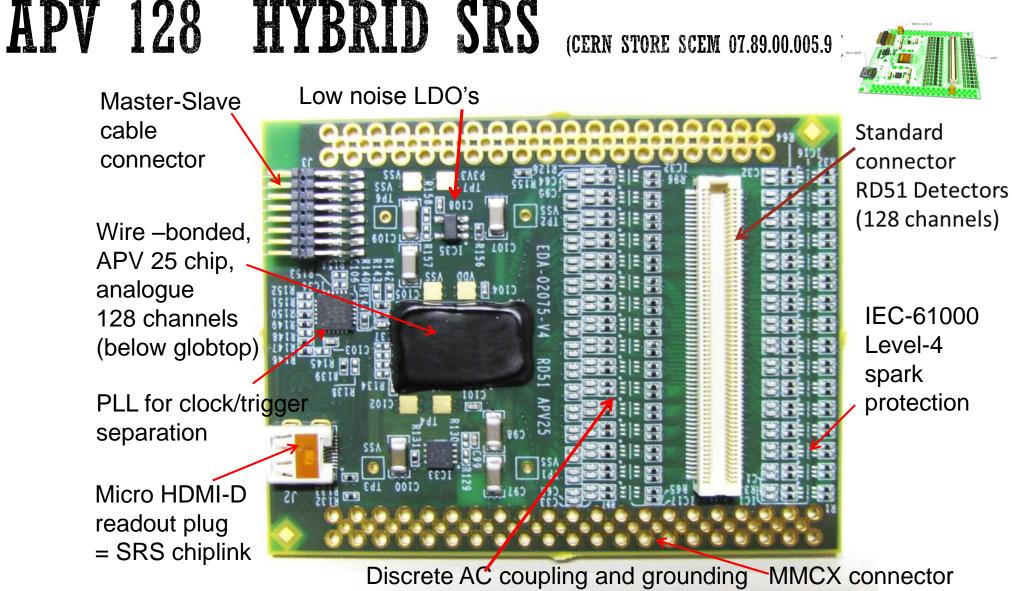
Crate environment

- Minicrate 19" 3U (CERN store)
- Eurocrate 19"6U (CERN store)
- ATCA Minicrate (EicSys)
- ATCA 14 slot full crate (EicSys)

Scalable Readout System


Readout Units

- Network switch (small systems)
- SRU (default, large systems)
- SRU-ATCA (planned)


SRS firmware

- FEC -APV frontend
- FEC -VMM frontend
- analogue module APV readout
- common mode/pedestal correction
- Zero Suppression APV
- 10 Gbit core Virtex6 XAUI (SRU)
- DDL core ALICE
- Slink core ATLAS
- TTC rx module Virtex-6 (SRU)

tre Ashere = 👥 User	93 D0	thuy lot carein thiny			,	ans Muller +
Scalable	Reado	out System (SF	tS) + Firmware + FEC + All Documents -			
Homo Chip Natrix SPS will		wiki		Search this site		P (
Surveys	Lype.	Name	tile	Holfed	Notified By	Desig pilos
survey	-	FDCV6_VMP12	CECVG VHIM2	00/10/2015 01:47 PM	Sprin Hertole	
		FEC_VMM2	FEC_VHH2	10/04/2015 03:20 AN	Sprin Hortoile	
Documents Documentation		feed	lesi .	15/00/2014 09:03 20	Sorie Horiste	
Shiftsame	1	fec app v10.0b	APV Zees-Suppression Bimware variant (APZ) ver 3.01 (heta) - CTF excitized	01/08/2012 01:01 PM	Sorin Hertole	
Finnane	8	foc_acc_v203	Rev ATV dota firmware version 2.08 (DTC CTF erabled)	27/07/2012 10:38 PM	Soria Mortole	
Talks		fec_atr_x207		19/06/2012 01:31 20	Sorie Harlein	
Papers (restricted) Proprints	1	tec arc v2010	Raw APV data tirms we version 2.05 (heta)	13/07/2012 05:23 PM	Sprin Hertola	
Other Docernents		foc. apz. vis. 30	APV Zoro-Suppression firmware variant (APZ) ver 1.0 (bota)	13/04/2012 05:22 FM	Sprin Hartole	
	80	fectors v1	Interface in Advance Clinic (Arth)	CONTRACTOR OF A DESCRIPTION OF	Reality Manhatra	

Workshop on Neutrino Near Detectors based on gas TPCs, Nov 2016, CEAN Senfor GND/click-in

Scalable Readout System

VMM HYBRID SRS (NEW DIGITAL SRS FRONTEND UNDER TEST)

Photo: 2 x wire-bonded VMM2 chips, VMM3 under work)

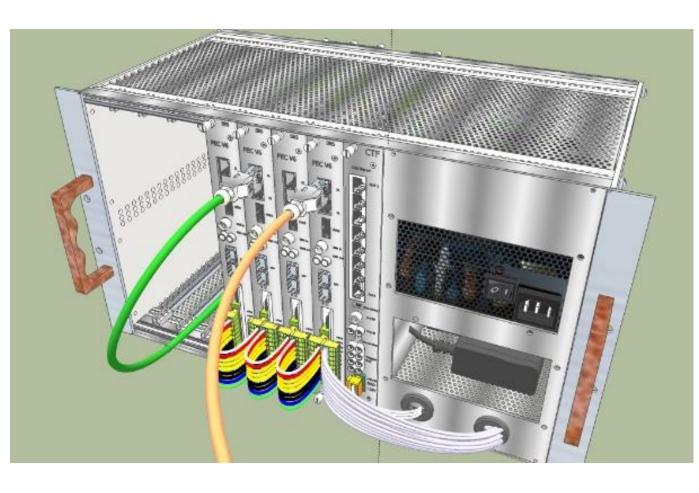
APV (ANALOGUE)

APV (250 nm CMOS)

- Pipeline depth: max. 192 clocks
- Trigger latency: max. 3 us
- Noise: < 500 e- intrinsic >750..1400 eon detector
- dynamic range: 25 fC
- Detector capacity: 18... < 60pf
- ADC ext. 4096/1000 [counts/baseline]
- Gain: fixed CSA gain 100uA/mip, 5 output signal gains (in step of 20%)
- Timing jitter : ¹/₂ (1/fc) [+- 12ns]
- Shaping times: 50 ns adjustable to 80 ns
- max readout rate: 7 kHz

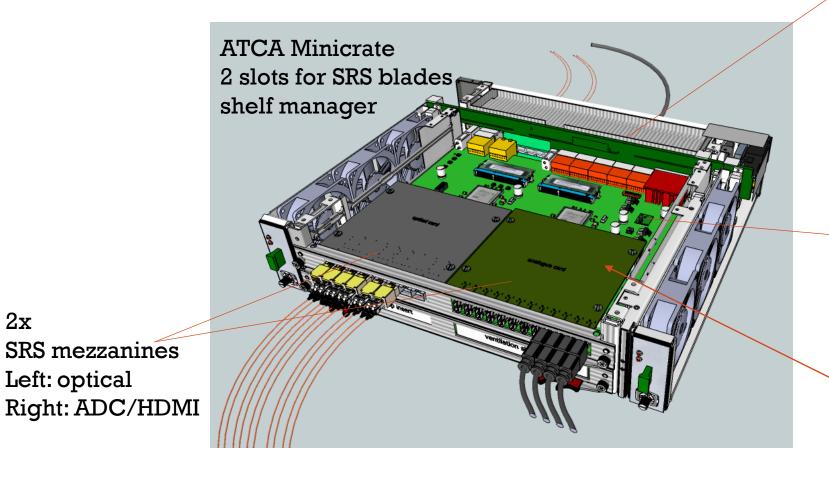
VIVIVI(DIGITAL)

VMM (130nm CMOS)


- Pipeline depth: 64 digital frames (peak)
- Trigger latency: (self triggered) or L0 (12.8us)
- noise : < 400 e- on 10x10 detector reported</p>
- dynamic range: expect >> 25 fC
- Detector capacity: 30pF < lnF
- ADC: embedded, 10 bit
- Gains: 8 CSA gains [0.5..16mV/fC]
- Timing jitter: 20 bit t-stamp, 1ns resolution
- Shaping times: 4 [25... 200ns]
- max readout rates: estimated 4 MHz/ch

EUROCRATES FOR LARGER SYSTEMS

- Stacking "of vertical slices"
- up to 8K channels per crate
- CTF card for common clock and Trigger (TC link)
- HDMI frontend links connected on rear side
- Power for APV or VMM via HDMI

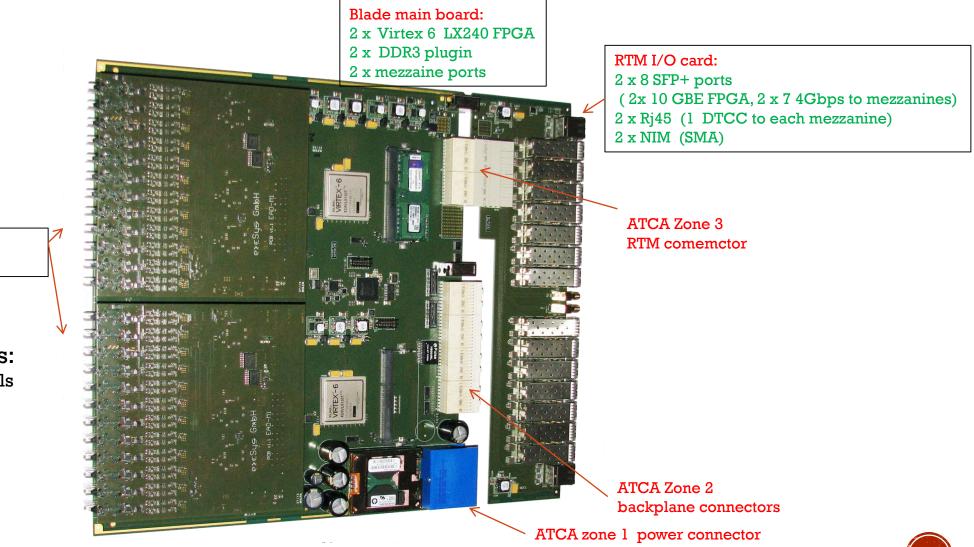


SRS ATCA

Meshed backplane (6 Gbps, 100Ω links)

RTM (rear Transition Module) 10 GB Ethernet, 3 GB SFP

SRS ATCA blade 2x FPGA LX240, 2 mezzanine slots



27/10/2016

2x

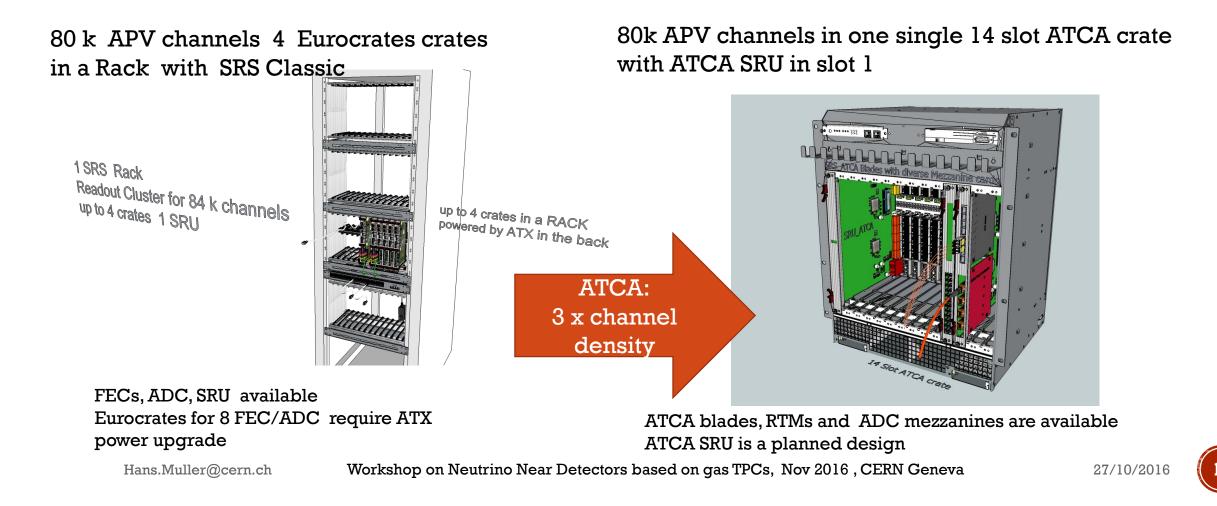
SRS ATCA OVERVIEW

2 x Mezzanines (ADC):

2 ADC mezzanines: up to APV 6144 channels

ATCA - BASED SRS

- ATCA industry standard crates of different size
- Very high-speed linked backplanes between blade-slots
- 3 x channel density compared to FEC
- FEC => Blade with 2 x Adapter plugins
- Adapter card=> mezzanine card


Photo SRS Minicrate with 1 blade, 24 HDMI ports for 6 kchannels

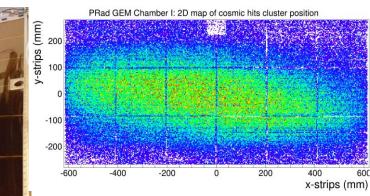
Hans.Muller@cern.ch

SRS CLASSIC VERSUS SRS ATCA

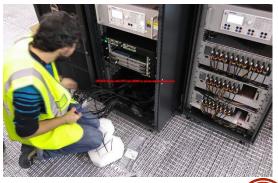
SRS IN EXPERIMENTS

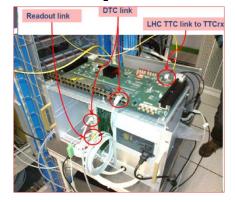


Detector telescope with SRS readout @testbeam 2016



universität**bonn**


Large surface MUST detector with SRS Classic and APIC trigger


PRad GEM with SRS- APV frontend @ UVa

NEXT Collab. SRS-ATCA with photon Detector frontend

SRS Totem: optical readout DTC

Hans.Muller@cern.ch

Workshop on Neutrino Near Detectors based on gas TPCs, Nov 2016, CERN Geneva

SRS with Timepix frontend

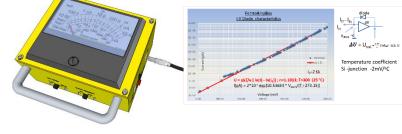
Online Event Display (I)

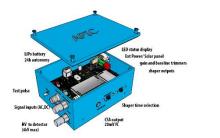
27/10/2016

Workshop on Neutrino Near Detectors based on gas TPCs, Nov 2016, CERN Geneva

SRS SERVICE ELECTRONICS

• <u>APIC</u>: preamplifier -shaper box, solar chargeable


• <u>Femto:</u> Femto-ampere meter with realtime signal output


• <u>AVD</u>: Active Voltage Divider / generator for MPGD's

..and more

=> AVD NIM module for up to 4 HV stages

WHERE TO GET SRS

believe it or not, this was and still is, the most difficult about SRS

SRS procurement until 2016

INHOUSE production RD51 (basically all early systems)

CERN Store (from produces like Prisma, NEOHM etc) <u>https://edh.cern.ch/Document/SupplyChain/MAG</u>

AVP hybrids, FEC + ADC cards, Minicrates, HDMI cables, SRS accessories **However !!!** Only via team account, delivery only to CERN, APV purchase restrictions

EicSys <u>http://www.eicsys.eu/</u>

ATCA crates, blades, RTM cards; ADC mezzanines **However !!!** No hybrids, waiting for news and testbeam qualification NEXT and ATLAS NSW users have their your own experts for SRS ATCA SRS procurement from 2017+

INHOUSE production RD51: stopped CERN Store: continued EicSys: no change reported

NEW SRS production licencies* 2017

SAMWAY Electronics: http://www.samwayelectronic.com

FEC and ADC cards, Eurocrates, SRS-ATCA

mezzanines

SRS Technology: http://www.srstechnology.ch

VMM hybrids, DVMcards, SRU, APIC, AVD, Femto

MORE POSSIBILITIES

... possible with active support and collaboration from your team For example:

- optical 3D frontend with CMOS cameras or Timepix-3 chips (>> 10 kHz frame-rate)
- multichannel, low noise photodetector frontend (APD's, SiPMs, MPCCs etc)
- calorimeter frontend with up to 16 bit dyn. range (high/low gain channel hybrids)
- SRS sensor frontends via I2C with new HRS connector (pressure, temperature, position, currents, gas purity, UV ps pulser, etc)

SRS RESOURCES AND REFERENCES

SRS documents and binaries database https://espace.cern.ch/rd51-wg5/srs

RD51 electronics school 2014 https://indico.cern.ch/event/283113/

MPGD Applications beyond Fundamental Science, 18 RD51 Collaboration meeting Aveiro 2016 https://indico.cern.ch/event/525268/timetable/#20160912

S. Martoiu, H.Muller, J.Toledo, Front-end electronics for the Scalable Readout System of RD51 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (2011) pp.2036-2038.

K. Gnanvo et al.,

Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors <u>Nuclear Science Symposium Conference Record (NSS/MIC)</u>, Nov. 2010 IEEE

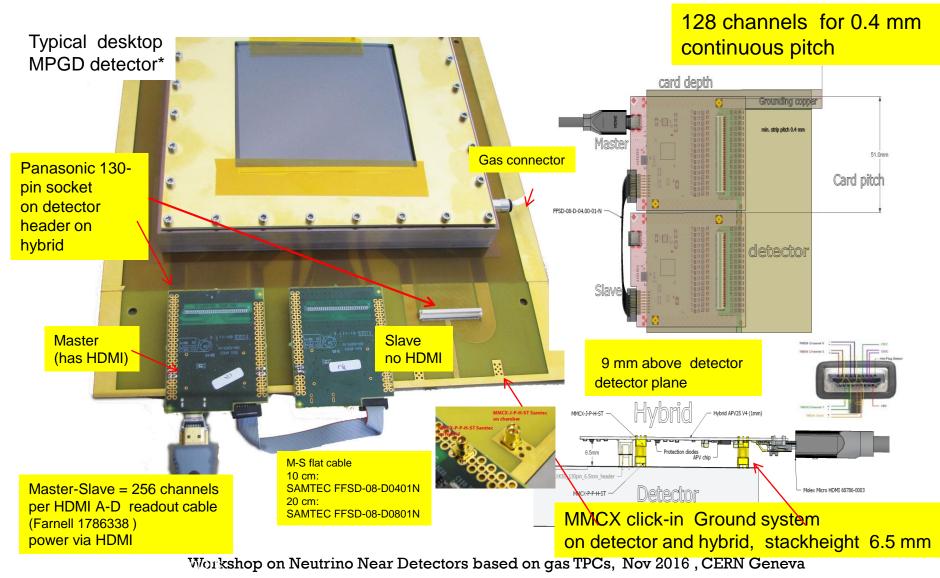
J. Toledo et al., The Front-End Concentrator card for the RD51 Scalable Readout System, 2011 JINST C11028.

S.Martoiu, H.Muller, A.Tarazona, J.Toledo, Development of the Scalable Readout System for Micro-pattern gas detector and other applications, 2013 JINST 8 C03015

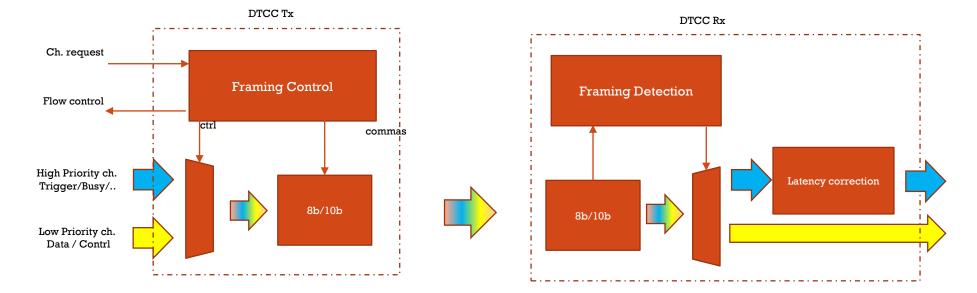
Ignacio Lázaro et al. Muon telescope based on Micromegas detectors: from design to data acquisition, IDUST 2014

R. Esteve et al., Readout and data acquisition in the NEX-NEW detector based on SRS-ATCA 2015 JINST C01008

Gianluigi De Geronimo et al, VMM2 - An ASIC for the New Small Wheels, TWEPP 2014 – Aix en Provence, France, September 2014 Workshop on Neutrino Near Detectors based of



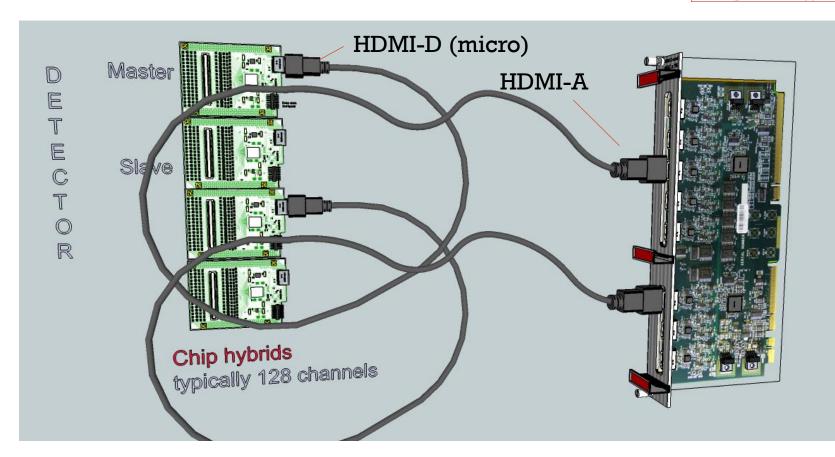
BACKUP SLIDES



MPGD-DETECTOR-SPECIFIC HYBRIDS AND ACCESSOIRS

DTCC LINK PROTOCOL

Time multiplexed DTCC link


Trigger, Busy, Clock = high priority and low latency Data = low priority Controls = Ethernet frames @low priority

(27)

FRONTEND LINK (DTCCP)

SRS uses HDMI cables A-D for connection of frontends to SRS

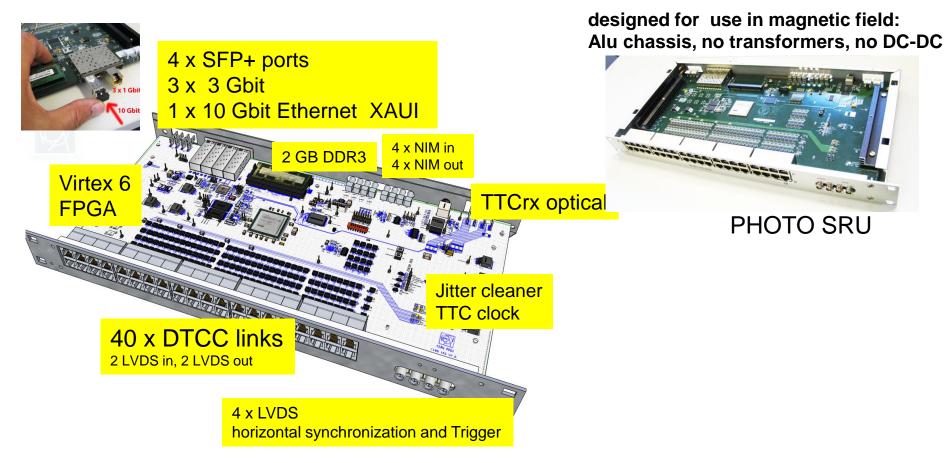
DTCCP =

Data uplinks Trigger downlink Clock downlink Controls bidir I2C Power 5V max. 1A

For distances 25m< L <150m → active HDMI links copper/ fibre under tests

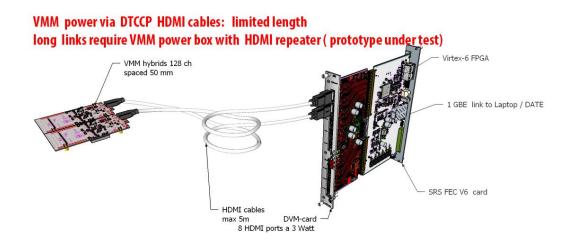
MDS CH1+ @ MDS CH1- @ GND @ TMDS CLK+ @ TMDS CLK- @ Utility @ SDA @ +SV Power @

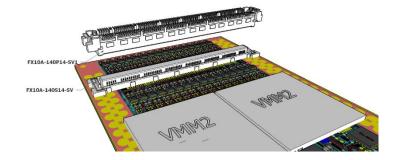
HPD @ GND @ SCL @ GND @ TMDS CH0- @ GND @ TMDS CH2- @ TMDS CH2- @


Fig. HDMI Type-A Connector

27/10/2016

SCALABLE READOUT UNIT (SRU)





3x power of APV frontend: direct powering via HDMI is limited in length \Rightarrow VMM Power and HDMI repeater box for long HDMI links is under works

VMM requires cooling on the detector: \Rightarrow cooling strategies under discussion

Standard MPGD connector (Panasonic 130 pin obsolete) => new connector for both MPGD detector frames and VMM3 hybrid in 2017

New 140 pin connector for VMM

SRS HISTORY RD51

- SRS, 2009+ standard readout system for MPGD detectors (GEM, MM, etc)
- CERN made MPGD detectors come with SRS connectors for SRS hybrids
- 2010+ SRS crates, electronics, accessories available trough CERN store
- Firmware, Software and Manual download from RD51 server
- DAQ systems : DATE (default), Labview
- O(100) deployed small and medium-sized SRS systems

