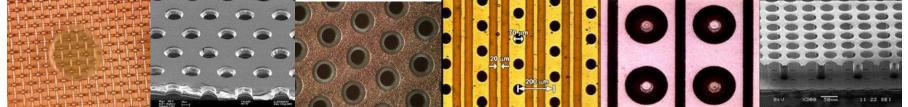
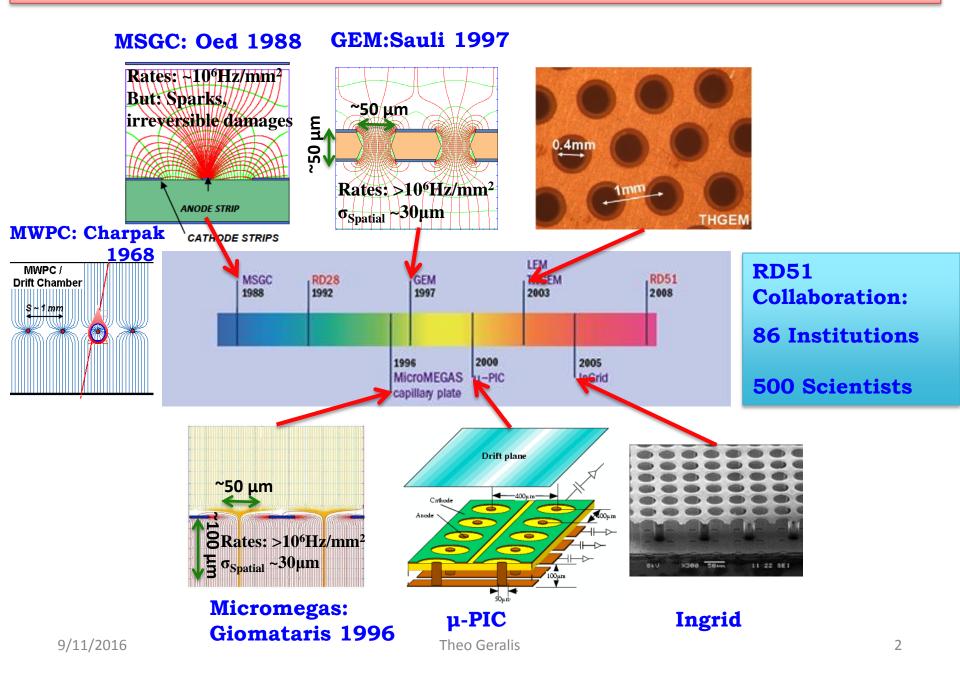


Introduction to the RD51 Collaboration



OUTLINE


- RD51/MPGD history
- Organization/Infrastructures
- Technological achievements
- Applications

NCSR Demokritos, Greece On behalf of the RD51 collaboration

Workshop on Neutrino Near Detectors based on gas TPCs CERN, 8-9 Nov. 2016

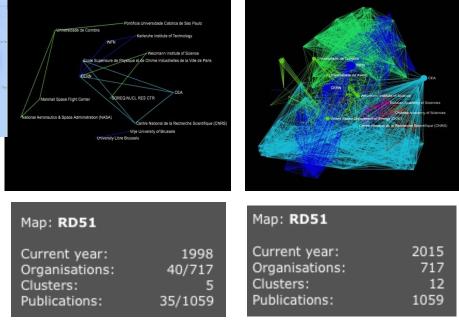
From Multi-Wire Proportional Chambers to Micro Pattern Gaseous Detectors

The RD51 Collaboration

Gem 2006

Gem 2000

Gem 2014

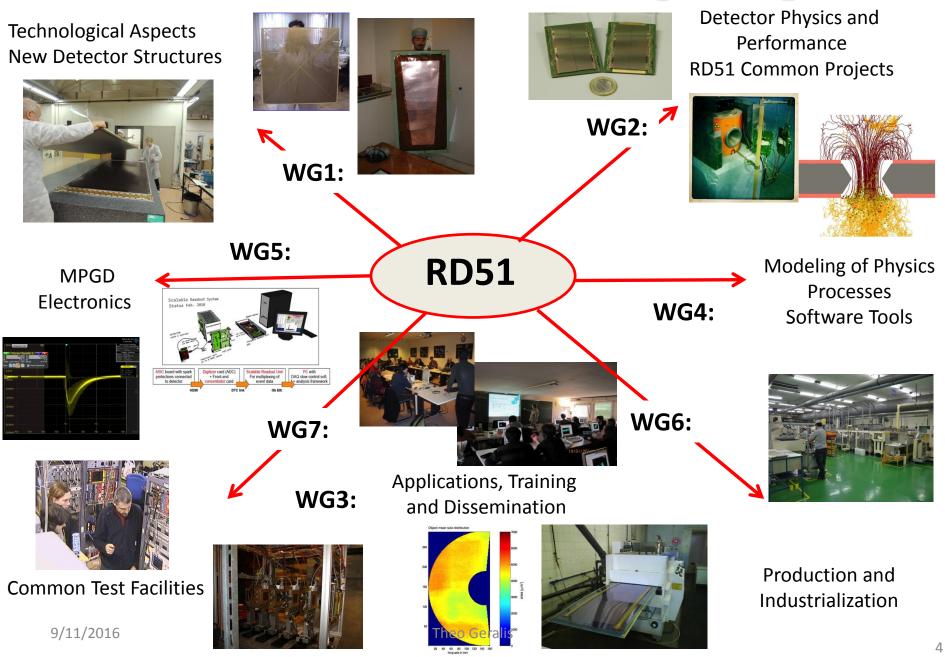


Micromegas 2000

Micromegas 2006

Main objectives:

- MPGD technological development
 - Provide the collaboration framework
 - Develop common simulation packages
 - Develop common read out electronics
- Access to "MPGD know-how"
- Foster Industrial production



 \rightarrow huge growth in interest in the MPGD technologies

Collaboration Spotting Software: http://collspotting.web.cern.ch/) Theo Geralis

9/11/2016

The RD51 Collaboration: Working Groups

RD51 related infrastructures: 1) EP DT MPT Workshop (Head: Rui De Oliveira)

The heart of the MPGD Globe: Design, prototyping, production New infrastructure (building, MPGD production machines, clean room etc) will be soon ready

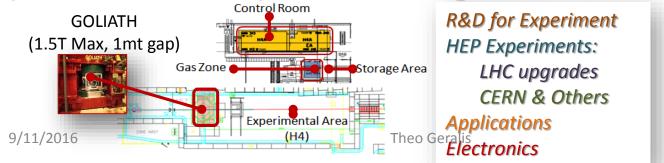
Room

 $(17m^{2})$

CERN Building 107 Basis of Design

Laboratory (140m²)

Norksh


IVL .MR

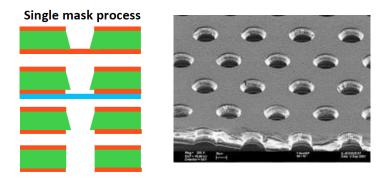
2) GDD Laboratory (RD51)

The Detector R&D laboratory:

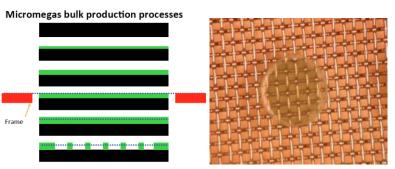
- Permanent users (ALICE, ATLAS, ESS)
- Temporary Users stations
- Cosmic stands, X-ray and radioactive sources
- Clean room, Workshop
- Vacuum and Gas System
- MPGD Electronics support
- 15 visiting groups, synergies with companies

3) Test Beam Area (SPS/H4 semi permanent RD51 area)

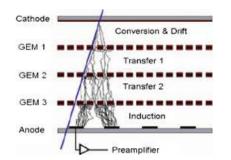
Organize test beam 3 times (2 weeks)/year

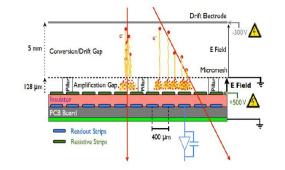

Meeting/ Visitors Room

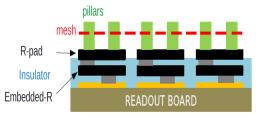
5


5

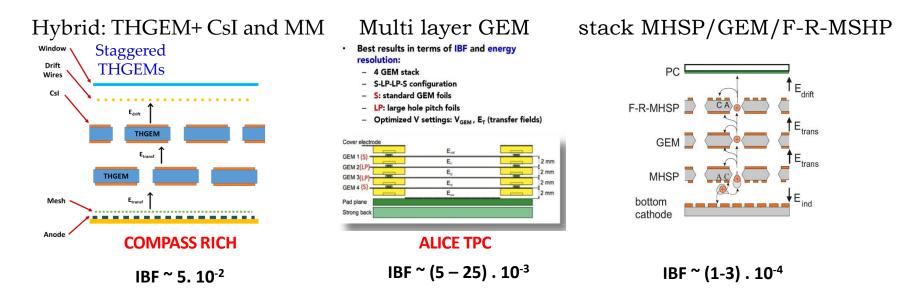
RD51 Technological achievements (I)


Large MPGDs production/industrialization of GEM, THGEM, Micromegas: single mask GEM Bulk Micromegas




 High rates and spark mitigation: Staged Gain: multiple layers GEM, THGEM, MHSP

Resistive coating, buried resistors Micromegas, RETGEM, RPWELL



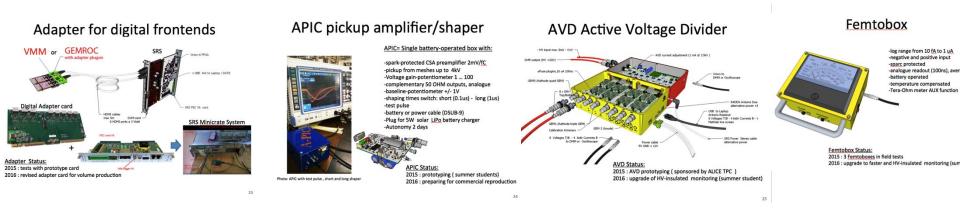
RC-constant controlled with embedded R-pattern

RD51 Technological achievements (II)

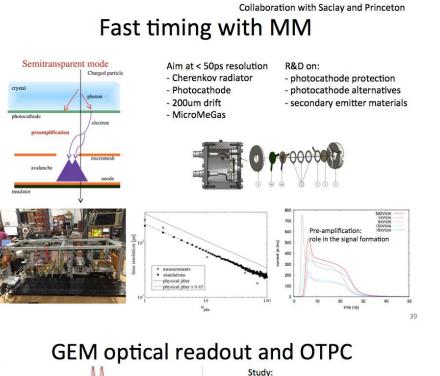
• **Ion Back Flow (IBF)**, Application in TPCs (field distortion) and photon detection (photocathode protection): Multiple Layers

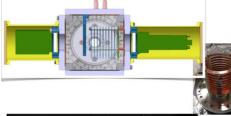
Radiation hardness

LHC MPGD Upgrades (ATLAS NSW project - Resistive Micromegas and CMS GEM muon chambers) proven to withstand the equivalent of 10 years of operation at the HL-LHC. Irradiation with: neutrons, X-rays, α and β .


RD51 Technological achievements (III)

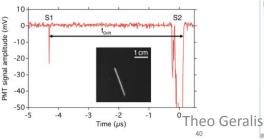
- Sealed detectors (purity) for space and non-laboratory applications
- Physics simulations and tools


Software tools: Magboltz (transport equations), Degrad (cluster size), Garfield++ (speeding up), optimization of charging up simulation
 Modeling of Physics processes: Penning in Ne mixtures, CO2 impact, GEM gas gain dependence on hole diameter, impact of mesh geometry to micromegas


Read-out electronics

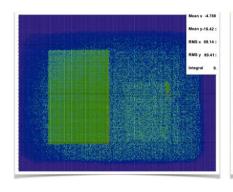
Scalable Readout System: Development of the readout system for MPGDs adaptable to various FE ASIC chips (APV25, VMM2, GEMRoc) Development of generic electronic devices for MPGDs:

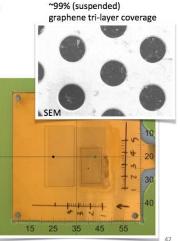
Generic Detector R&D



Study: - Visible (near UV and near IR)

scintillation of gasses - Event topology study

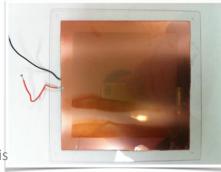




Graphene

Membrane opaque to ions and transparent to electrons - solution of the ion back-flow in gaseous detectors

- protective layer on photocathodes
- enhancement of electron emission


Collaboration with UCL

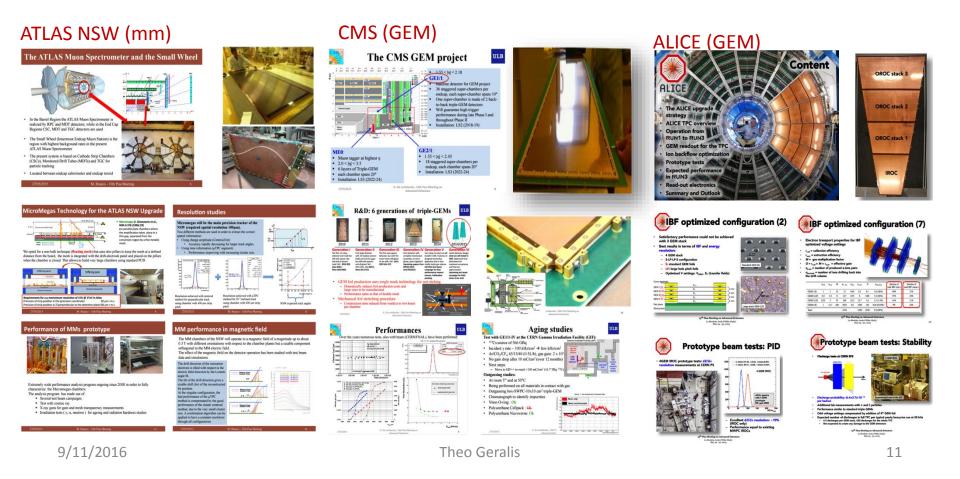
Collaboration with Tokyo University

Glass GEM

Photo Etchable Glass 3 (PEG3): Rigid (self sustained structure) 'Laser assisted etching' opens new possibilities Slightly conductive (milder charge-up) Clean and low outgassing (sealed operation)

Imaging with electronic readout

The bat Kapton strips Aluminum block


41

MPGD Technologies for Present and Future:

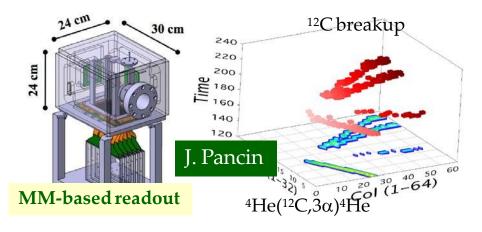
- Hadron / Nuclear Physics Experiments-Heavy Ion Facilities
- High Energy Physics
- Hadron / Lepton Colliders
- Photon / Neutron Detection
- Neutrino Physics / Dark Matters Detection
- X-Ray Detection and γ-Ray Polarimetry

MPGD Technologies: LHC experiments Upgrades Challenges: Ultra high rates, radiation harsh environment, longevity, large area detectors Present: TOTEM (GEM), LHCb (GEM) Future:

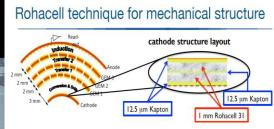
ATLAS Muon System NSW (μM), Muon tagger μ-PIC, CMS Muon System (GEM), ALICE (GEM TPC), FCC Collider (GEM, THGEN, Micromegas, μ-PIC, InGrid)

MPGD Technologies: Hadron and Nuclear and Heavy Ion Physics experiments

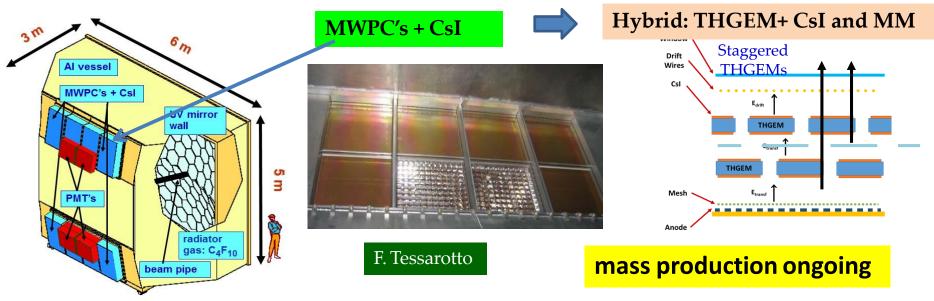
Challenges: Ultra High rates, IBF


Present:

 COMPASS (GEM, μMegas, THGEM RICH), rates: 100kHz/mm² First experiment to use MPGDs (GEM, Micromegas and recently THGEM)
 KEDR (GEM), Rates: 1MHz/mm²
 CLAS12: Cylindrical MM
 Future: JLAB: SBS, pRad, SoLID (GEM, NP, tracking), JPARC: E42, E45 (Hadron Physics, ACTAR TPC


The ACTAR TPC Project

Cylindrical GEM for BESIII Experiment @ e+e- collider Beijing


(gas is used as a secondary target for nuclear reactions): Goal: Nuclear structure with rare-isotope beams

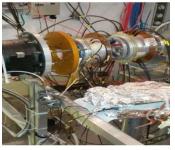
MPGD Technologies: Photon detection Challenges: IBF photocathode protection Present: COMPASS (THGEM RICH) Future: JLAB: SBS, pRad, SoLID (GEM, NP, tracking), JPARC: E42, E45 (Hadron Physics, ACTAR TPC

After a long-term fight for increasing electrical stability at high rates: MWPC robust operation is not possible at gain~10⁵ because of photon feedback, space charge & sparks

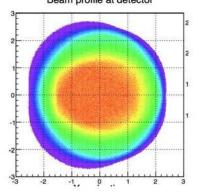
PMTs not adequate \rightarrow only small demagnification factor allowed; 5 m² of PMTs not affordable.

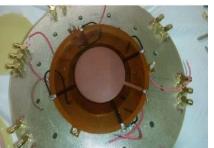
MPGD Technologies: Neutron detectors (ITER spallation sources, Macromolecular

Crystallography


Beam diagnostics)

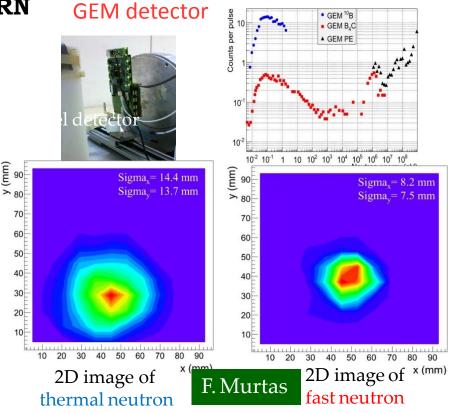
Challenges: Low mass detectors Present:


nTOF


Future:

ESS (macromolecular crystallography, neutron scattering)

Installation on NTOF Beam profile at detector



- 4 pad detector μMegas detector:
- 2 D reconstructed image

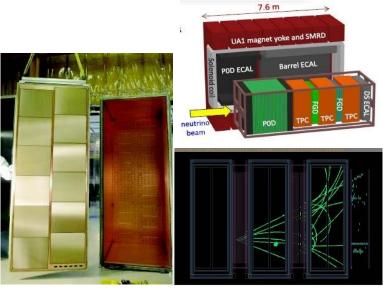
T. Papaevangelou

 μM Neutron Monitor applied to fission reactor

nTOF at CERN

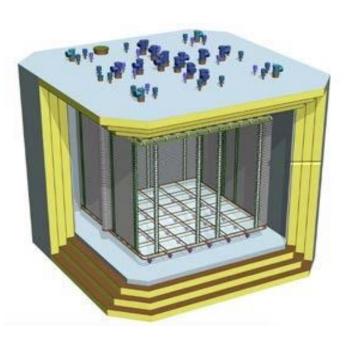
9/11/2016

Theo Geralis


MPGD Technologies: Neutrino Physics Challenges: Large area TPCs Present:

T2K (Japan), first large scale neutrino experiment with MPGD (9 m^2 TPC with micromegas)

Future:

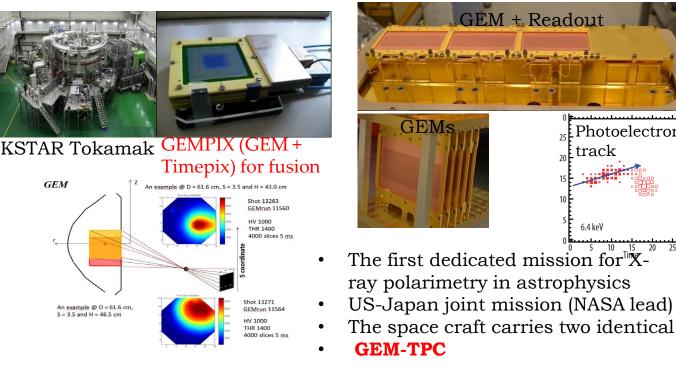

LBNO-DEMO (LAr TPC THGEM), DUNE 720 m² (LAr TPC THGEM), Ship (26 m² micromegas, GEM, mRWELL)

T2K experiment

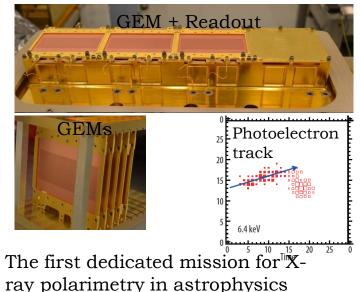
- 72 Micromegas, 120k channels (since 2009)
- Charge, momentum and dE/dx PID)
- Spatial resolution : 0.6 mm
- Momentum res.: 9% at 1 GeV
- dE/dx: 7.8 % (distinguish μ/e , identify ν_e)

9/11/2016

MPGD Technologies: Dark Matter detection Challenges: Ultra low background detectors < 10⁻⁷cnts/keV/cm² Present: CAST (Micromegasµbulk and Ingrid), NEWAGE (Kamioka, TPC GEM, µPIC) Future: PANDA-X(TPC µbulk micromegas, DARWIN (THGEM GMPT), IAXO (µbulk micromegas)

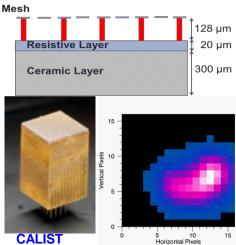


MPGD Technologies: X and y ray detection and polarimetry Astrophysics and fusion plasma monitor Challenges: Track photoelectrons and low energy e **Present:** KSTAR Korea (Plasma monitor), SMILE II (y-ray imaging, GEM and µPIC), ETCC


camera (GEM and µPIC) environmental yray monitoring

Future:

PRAXyS (TPC GEM x-ray polarimetry), CALISTE (piggy back micromegas, X-ray polarimetry)

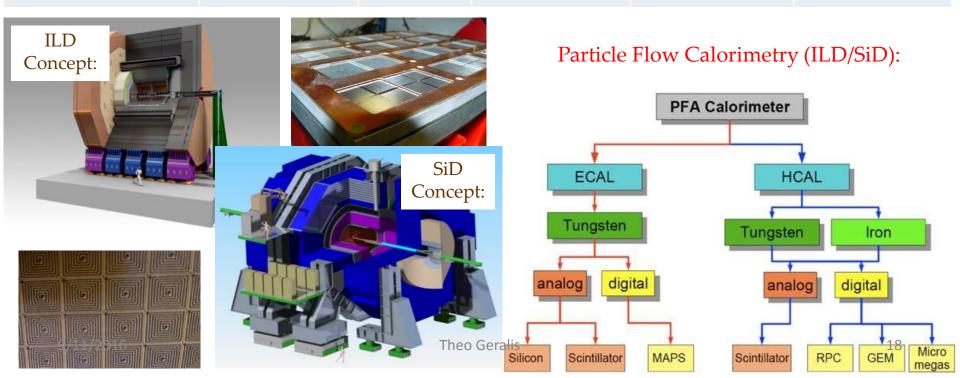


PRAXyS X-ray polarimetry

CALIST-MM: X-ray polarimetry

Piggyback Micromegas

- 10 x 10 x 20,7 mm3 (Compact)
- 16x16 pixels : 8 ASICs of 32 channels
- Pixel $\emptyset = 500 \,\mu\text{m}$; Pixel Pitch = 580 μm
- Consumption = 850μ W/channel (218 mW in total)
- Low Noise (ENC = $50 e^{-rms}$)


9/11/2016

Theo Geralis

GEM-TPC

MPGD Technologies for the International Linear Collider

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
ILC Time Projection Chamber for ILD: Start: >2030	High Energy Physics (tracking)	Micromegas GEM (pads) InGrid (pixels)	Total area: ~ 20 m ² Single unit detect: ~ 400 cm ² (pads) ~ 130 cm ² (pixels)	Max. rate: < 1 kHz Spatial res.:<150μm Time res.: ~ 15 ns dE/dx: 5 % (Fe55) Rad. Hard.:no	Si + TPC Momentum resolution: dp/p < 9*10- ⁵ 1/GeV Power-pulsing
ILC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	GEM, THGEM RPWELL, Micromegas	Total area: ~ 4000 m^2 Single unit detect: $0.5 - 1 \text{ m}^2$	Max.rate:1 kHz/cm ² Spatial res.: ~ 1cm Time res.: ~ 300 ns Rad. Hard.: no	Jet Energy resolution: 3-4% Power-pulsing, self- triggering readout

MPGD Conferences and Special focus events

MPGD Conferences since 2009:

1st MPGD2009, Crete, Greece
2nd MPGD2011, Kobe, Japan
3rd MPGD2013, Zaragoza, Spain
4th MPGD2015, Trieste, Italy

4th **MPGD2015, Trieste, Italy** 140 participants, 120 abstracts

NEXT: 5th MPGD2017, Temple University, USA May 22 – 26, 2017

Special focus MPGD events. Most recent :

- Academia-Industry Matching event: Second special workshop on neutron detection with MPGDs, CERN, March 2015
- Rd51 Academia-Industry Matching event: Special workshop on photon detection with MPGDs, CERN, June 2015
- Topical workshop on **resistive electrodes**, CERN, Dec. 2015
- Topical workshop on **discharges** in MPGDs, CERN, March 2016
- MPGD Applications Beyond Fundamental Science Workshop, Aveiro, Portugal, Sept. 2016
- Schools, visits, events

CONCUSIONS

RD51 collaboration contribution:

MPGD technologies have received enormous boost over the last decade

MPGDs are used in many scientific domains

MPGDs are used in many applications beyond Particle Physics

Exciting field for creative new ideas, attractive for young scientists !