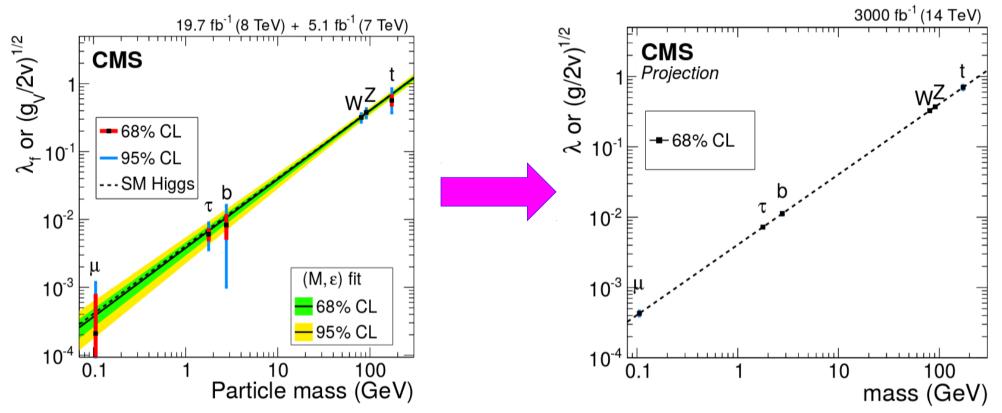


Overview of CMS Higgs Studies to be presented at the ECFA workshop

15th Sep. 2016


David Sperka University of Florida

On Behalf of the CMS Collaboration

Introduction: Higgs Physics Program for HL-LHC

- The 125 GeV Higgs boson has been discovered (7+8) TeV) and rediscovered (13 TeV)
- There are some deviations, but well within the current uncertainties
 - No striking discrepancies from the SM have been observed so far
- The LHC experiments must continue to test the SM predictions for the Higgs sector
 - Increase the precision of the measurements
 - Search for rare and BSM signatures

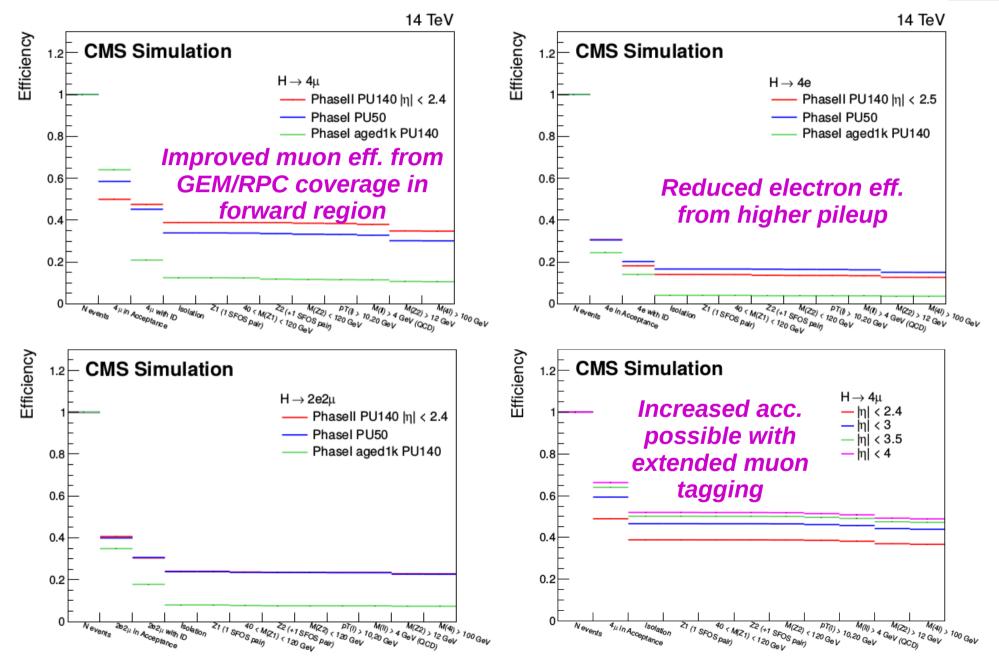
CMS Higgs Studies for ECFA workshop

CMS Experiment Upgrades CMS Phase II Upgrades

TDR-15-002

Barrel Calorimeter Endcap Calorimeter New BE/FE electronics • High-granularity calorimeter • ECAL: lower temperature Radiation-tolerant scintillator HCAL: partially new scintillator 3D capability and timing Tracker Radiation tolerant, high granularity, low material budget • Coverage up to $|\eta|=3.8$ Triggering capability at L1 **Muon System** • New DT/CSC BE/FE electronics • GEM/RPC coverage in $1.5 < |\eta| < 2.4$ **Trigger and DAQ** • Muon-tagging in 2.4<|η|<3.0 • Track-trigger at L1 • L1 rate ~ 750kHz • HLT output ~ 7.5kHz Scouting opportunities?

Projection Scenarios



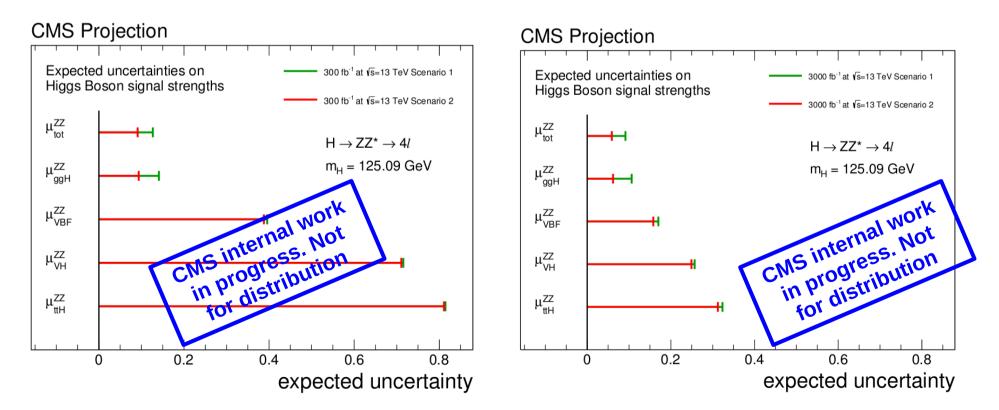
- Projections carried out by scaling event yields from 13 TeV analyses (2.3-12.9 fb⁻¹) to 300fb⁻¹ (3000 fb⁻¹), two scenarios for systematics
- Scenario 1: same systematic uncertainties as 13 TeV analysis
- Scenario 2: reduced systematic uncertainties
 - → Experimental uncertainties scale with 1/√⊥ until they reach the "true" systematic level, e.g.:
 - Lepton eff. (1% per lepton)
 - Integrated Luminosity (1.5%)
 - -> Theoretical uncertainties scaled by $\frac{1}{2}$
- Impact of increased pileup and detector upgrades included where possible using existing studies, e.g.

<u>TDR-15-002</u>

CMS Higgs Studies for ECFA workshop

CMS Experiment Upgrades Phase 2 Upgrade Impact: H→ZZ

CMS Higgs Studies for ECFA workshop


David Sperka, on behalf of the CMS Collaboration

TDR-15-002

Signal Strength Projections Prod. Modes with H→ZZ decay

- Projections carried out by scaling ICHEP analysis to 300fb⁻¹ (3000 fb⁻¹)
- For Scenario 2, following experimental systematics have been reduced
 Lepton eff. (1% per lepton) and Integrated Luminosity (1.5%)
- For 3000 fb⁻¹, changes in yields implemented based on TP studies
 - → Z+X background yields (4µ: ~2.7x, 4e: ~4.7x, 2e2µ: ~3.2x)
 - → Signal and ZZ background yields (4µ: ~1.17x, 4e: ~0.83x, 2e2µ: ~1.0x)

0

-0.1

CMS Projection

 μ_{VBF}

 μ_{HH}

 μ_{ggH}

 $\mu_{\text{inc.}}$

-0.2

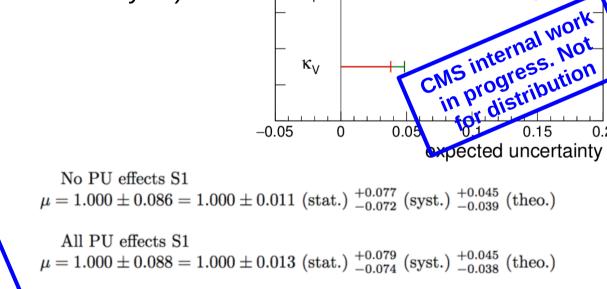
3000/fb Scenario 1

Signal Strength Projections Prod. Modes/Couplings with $H \rightarrow \gamma \gamma$

- Width of interaction region assumed to be 5cm, instead of current 3.6cm
- Photon ID eff. decreased by 2.3%(10%) in EB(EE) (Signal and prompt Bkg.)
- Vertex Finding eff. reduced from 80% to 40%
- Photon energy resolution assumed to be unchanged

3000/fb Scenario 2

CMS internal work


expected uncertainty

in progress. Not for distribution

0.3

0.4

 \rightarrow Fix μ_{VH} =1 (no VH category in ICHEP analysis)

CMS Projection

 K_{γ}

κα

 κ_{F}

3000/fb Scenario

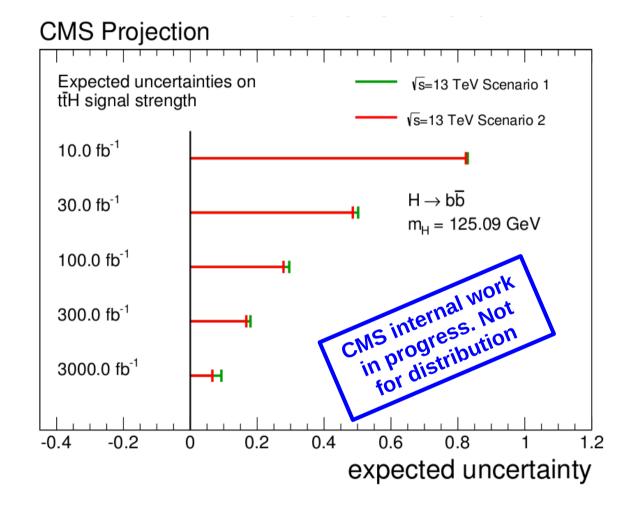
No PU effects S2 $\mu = 1.000 \pm 0.034 = 1.000 \pm 0.011$ (stat.) $^{+0.018}_{-0.017}$ (syst.) $^{+0.029}_{-0.025}$ (theo.)

All PU effects S2 $\mu = 1.000 \pm 0.036 = 1.000 \pm 0.013$ (stat.) $^{+0.019}_{-0.019}$ (syst.) $^{+0.029}_{-0.025}$ (theo.)

David Sperka, on behalf of the CMS Collaboration

0.2

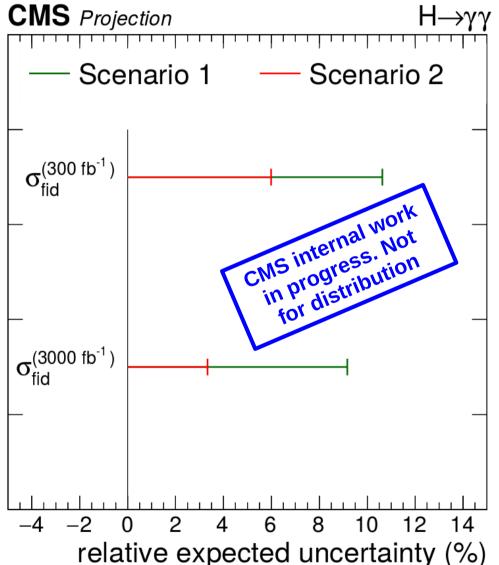
3000/fb Scenario 2


 $\rightarrow \gamma \gamma$

Signal Strength Projections ttH Production with H→bb

- Based on 2.7 fb⁻¹ 2015 data, lepton+jets and dilepton channels
- Scenario 2: scale sys. unc. by 1/√⊥, th. unc. by 0.5

CMS internit	al work Not for Jution	
$\mathcal{L}[\mathbf{fois}]$	scenario 1	scenario 2
10.0	1.0	1.1
30.0	1.7	1.8
100.0	3.1	3.2
300.0	5.2	5.5
3000.0	16.1	17.1



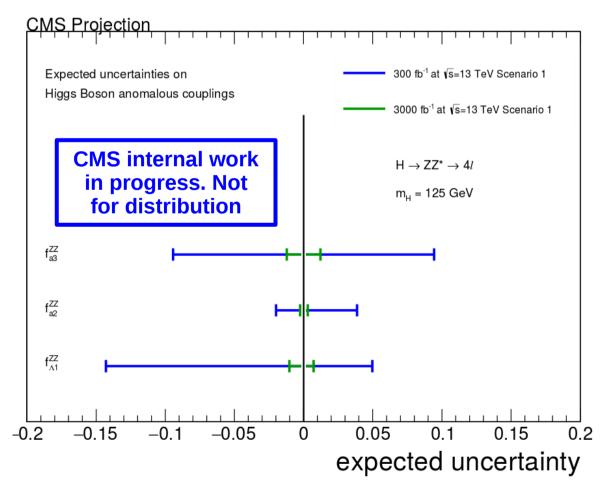
nt categorization by

• Theoretical uncertainty on the signal cross section is completely decoupled

Cross Section Projections Fiducial Cross Section with $H \rightarrow \gamma \gamma$

- With increased integrated luminosity fiducial cross sections will become more important
 - Less sensitive with low luminosity due to removal of event categorization by production mode

Anomalous Couplings Projections Anomalous HVV Interactions


- Important to determine spin and quantum numbers of the particle accurately
- Generic amplitude of $H \rightarrow ZZ$ for spin-0 particle can be written as:

 $A(HVV) \sim \left[a_1 - e^{i\phi_{\Lambda Q}} \frac{(q_{V1} + q_{V2})^2}{\Lambda_Q^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{V1}^2 + q_{V2}^2)}{\Lambda_1^2} \right] m_V^2 \epsilon_{V1}^* \epsilon_{V2}^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$

 Can test for anomalous HVV couplings a

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} \qquad \phi_{ai} = \tan^{-1}(a_i/a_1)$$

- Assume the same systematics as ICHEP (statistically limited)
 - → Expect to constrain fraction f_{ai} < ~1% with 3000 fb⁻¹
 - Better than previous projections due to the inclusion of interference effects

Projections: BSM Processes Projections for MSSM $\Phi \rightarrow \tau \tau$

- One of the most sensitive channels for constraining extended Higgs sectors
 - → Especially at large tan β in TypeII 2HDM (e.g. MSSM)

 $2.3 \text{ fb}^{-1} \rightarrow 300 \text{ fb}^{-1}$

Expected

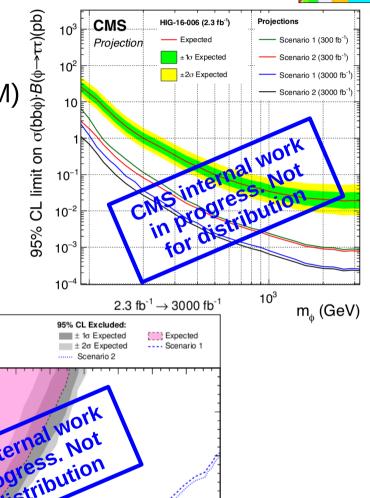
---- Scenario 1

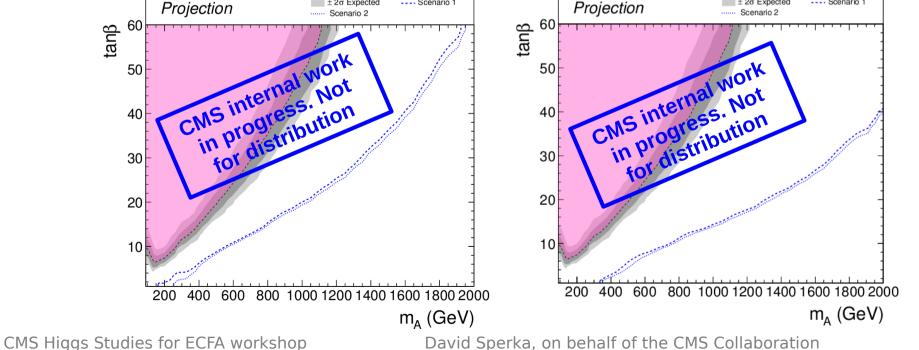
- Projections based on 2015 analysis (2.3 fb⁻¹)
- Single resonance model-independent limits:
 - → H+A, $gg\Phi \rightarrow \tau\tau$ and $bb\Phi \rightarrow \tau\tau$

HIG-16-006

CMS

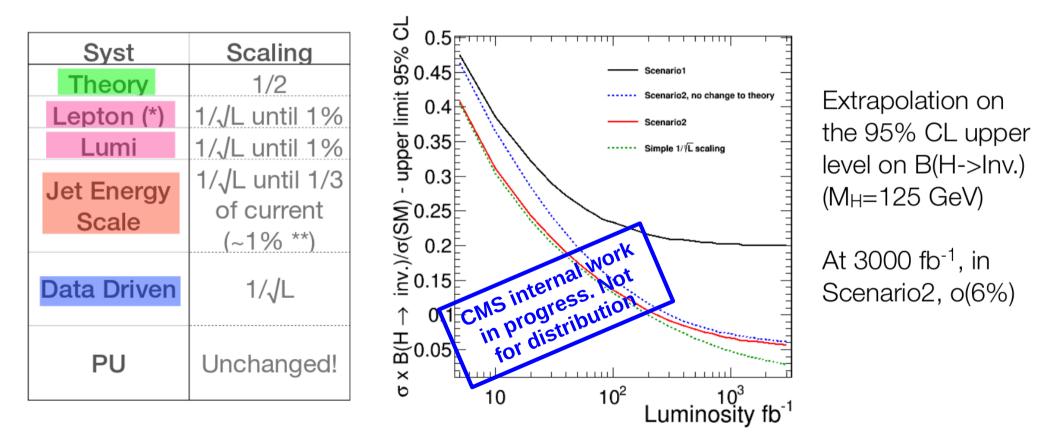
• Model-dependent limits with H+A: (m^{mod+} scenario)


95% CL Excluded


± 1σ Expected

+ 2σ Expected

• Still statistically limited for large values of m(A)


HIG-16-006

CMS

Projections: BSM Processes **Projections for VBF H→Invisible**

- For scenario 2, scale the sys. unc. on objects as in the table below
- Performance of tau ID and MET unclustered energy assumed constant
 Higher pileup, but algorithms/detector expected to improve

Additional Projections Planned Projections still in Progress

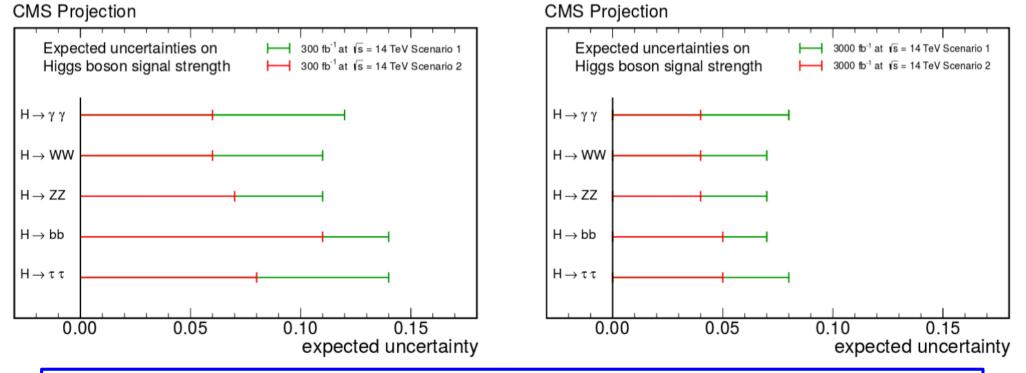
- A few other channels not ready today but may be ready for ECFA
 → e.g. VBF H → bb
- Considering to have a combination of $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ$, and ttH analyses • Produce $\kappa_v - \kappa_F 2D$ constraints
 - Perhaps other coupling measurements (e.g. ratios which are less systematically limited)
- Also considering making a projection of differential measurements
 - Statistically limited if considering large number of bins, or if measuring normalized distributions
 - \rightarrow Also, the high p_T region is of particular interest for BSM

Conclusions

- Projections for 300/3000 fb⁻¹ have been made using 13 TeV analyses
- Experimental improvements/degradations derived from TP studies have been included where possible
- Additional studies with more detailed description of the upgrade scenarios will be performed in the coming months

Backup

CMS Higgs Studies for ECFA workshop

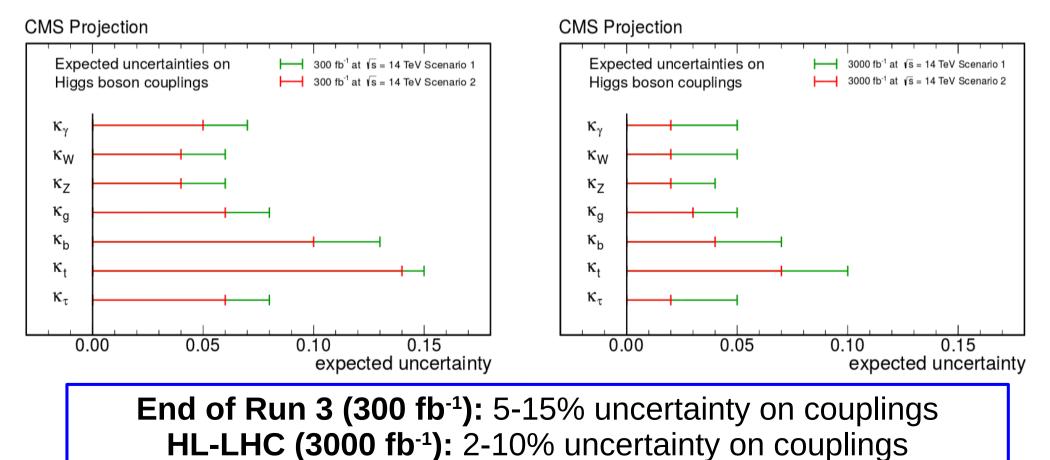

David Sperka, on behalf of the CMS Collaboration

Projections: Precision tests of SM Higgs Boson Signal Strength

CMS-NOTE-2013-002

- Projections have been obtained by scaling event yields to 300(0) fb⁻¹ at $\sqrt{s} = 14$ TeV
- Use Run 1 Legacy results (7+8 TeV) and assume performance unchanged
- Two scenarios for systematic uncertainties were considered:
 - Scenario 1: systematic unc. unchanged
 - Scenario 2: theoretical unc. scaled by 1/2, experimental unc. scaled by $1/\sqrt{\int \mathcal{L}}$

End of Run 3 (300 fb⁻¹): 6-14% uncertainty on signal strengths HL-LHC (3000 fb⁻¹): 4-8% uncertainty on signal strengths


CMS Higgs Studies for ECFA workshop

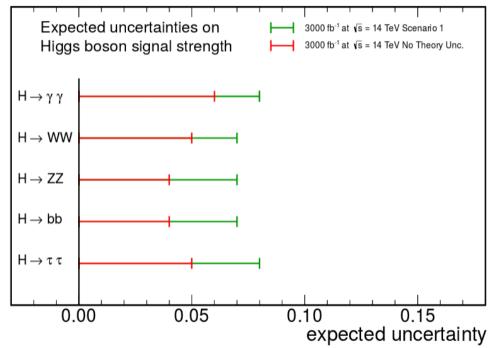
Projections: Precision tests of SM Higgs Boson Couplings

• Projected couplings have been obtained using the kappa framework

 $\sigma \cdot \mathrm{BR}(xx \to \mathrm{H} \to ff) = \sigma_{\mathrm{SM}}(xx \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}}(\mathrm{H} \to ff) \cdot \frac{\kappa_x^2 \cdot \kappa_f^2}{\kappa_{\mathrm{H}}^2}$

- Theoretical uncertainties have been dominant in the projections
 - → In the last year N³LO gg \rightarrow H predictions have been produced (unc. almost halved)

CMS Higgs Studies for ECFA workshop

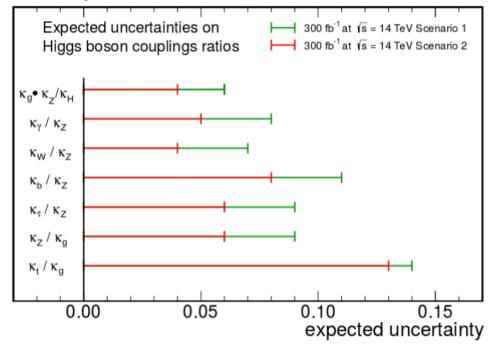

David Sperka, on behalf of the CMS Collaboration

<u>CMS-NOTE-2013-002</u>

CMS

Projections: Precision tests of SM CMS-NOTE-2013-002 Extrapolated Coupling Precision

CMS Projection



CMS Projection Expected uncertainties on 3000 fb⁻¹ at √s = 14 TeV Scenario 1 Higgs boson couplings 3000 fb⁻¹ at vs = 14 TeV No Theory Unc. κ_{γ} κ_W κ₇ κ_g κ_{b} κ_t κ_{τ} 0.00 0.05 0.10 0.15 expected uncertainty

Projections: Precision tests of SM CMS-NOTE-2013-002 Extrapolated Coupling Precision

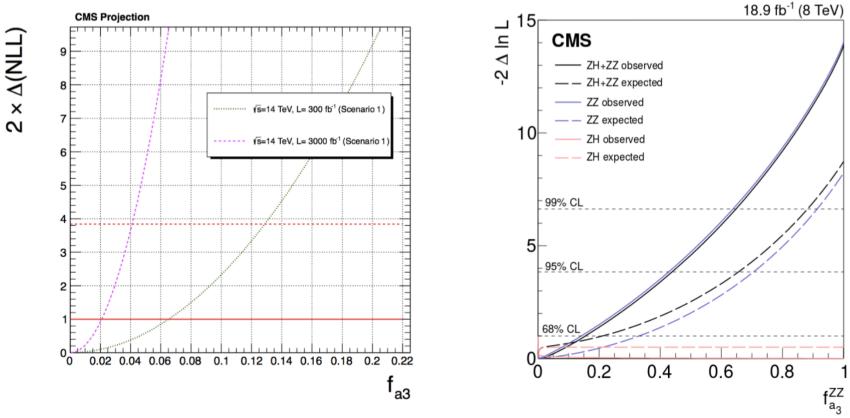
CMS Projection

CMS Projection Expected uncertainties on 3000 fb⁻¹ at vs = 14 TeV Scenario 1 Higgs boson couplings ratios 3000 fb⁻¹ at vs = 14 TeV Scenario 2 $\kappa_{g} \bullet \kappa_{z} / \kappa_{H}$ $\kappa_{\gamma} / \kappa_{z}$ κ_w / κ_z $\kappa_{\rm b}/\kappa_{\rm Z}$ κ_{τ}/κ_{z} κ_z / κ_a κ_t / κ_a 0.00 0.05 0.10 0.15

expected uncertainty

Projections: Precision tests of SM CMS-NOTE-2013-002 Extrapolated Coupling Precision

H decay	prod. tag	exclusive final states	cat.	res.	ref.
$\gamma\gamma$	untagged	$\gamma\gamma$ (4 diphoton classes)	4	1-2%	
	VBF-tag	$\gamma\gamma + (jj)_{\rm VBF}$	2	<1.5%	6
	VH-tag	$\gamma\gamma + (e, \mu, MET)$	3	<1.5%	U
	ttH-tag	$\gamma\gamma$ (lep. and had. top decay)	2	<1.5%	23
$ZZ ightarrow 4\ell$	$N_{\rm jet} < 2$	4e, 4µ, 2e2µ	3	1-2%	7
	$N_{ m jet} \geq 2$	4e, 4μ , $2e2\mu$		1-2 /0	
$WW \rightarrow \ell \nu \ell \nu$	0/1-jets	(DF or SF dileptons) \times (0 or 1 jets)	4	20%	8
	VBF-tag	$\ell \nu \ell \nu + (jj)_{\text{VBF}}$ (DF or SF dileptons)	2	20%	24
	WH-tag	$3\ell 3\nu$ (same-sign SF and otherwise)	2		25
ττ	0/1-jet	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times (low or high p_T^{\tau})$	16		
	1-jet	$ au_h au_h$	1	15%	10
	VBF-tag	$(\mathbf{e}\tau_h, \mu\tau_h, \mathbf{e}\mu, \mu\mu, \tau_h\tau_h) + (jj)_{\mathrm{VBF}}$	5		
	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu\tau_h, e\mu)$	8		26
	WH-tag	$ au_h \mu \mu$, $ au_h e \mu$, $e au_h \tau_h$, $\mu \tau_h \tau_h$	4		20
bb	VH-tag	($\nu\nu$, ee, $\mu\mu$, e ν , $\mu\nu$ with 2 b-jets)×x	13	10%	27
	ttH-tag	(ℓ with 4, 5 or \geq 6 jets) \times (3 or \geq 4 b-tags);	6		28
		(ℓ with 6 jets with 2 b-tags); ($\ell\ell$ with 2 or \geq 3 b-jets)	3		20
$Z\gamma$	inclusive	(ee, $\mu\mu$) × (γ)	2		29
μμ	0/1-jets	μμ	12	1-2%	30-32
	VBF-tag	$\mu\mu + (jj)_{\rm VBF}$	3	1-2 /0	30732
invisible	ZH-tag	(ee, $\mu\mu$) × (MET)	2		21

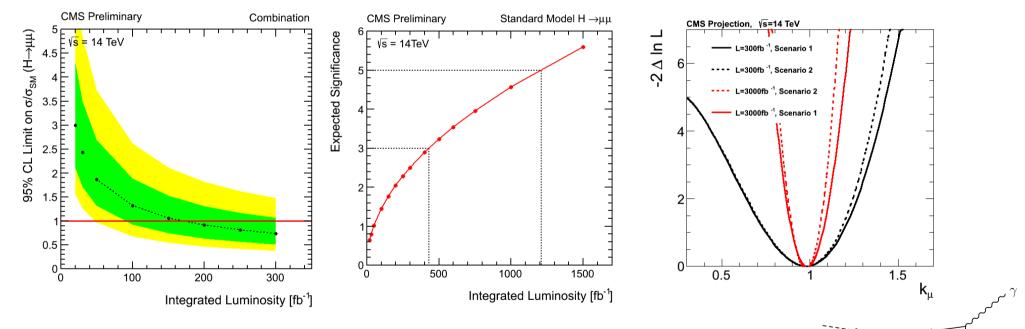

CMS Higgs Studies for ECFA workshop

Projections: Rare Processes Anomalous Couplings

- Important to determine spin and quantum numbers of the particle accurately
- Generic amplitude of $H \rightarrow ZZ$ for spin-0 particle can be written as:

$$A(\text{HVV}) \sim \left[a_1^{\text{HVV}} + \frac{\kappa_1^{\text{HVV}} q_{V_1}^2 + \kappa_2^{\text{HVV}} q_{V_2}^2}{\left(\Lambda_1^{\text{HVV}}\right)^2}\right] m_{V_1}^2 \epsilon_{V_1}^* \epsilon_{V_2}^* + a_2^{\text{HVV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{HVV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

- Can test for anomalous CP-odd coupling a₃
 - → Expect to constrain fraction f_{a3} < 0.13 (0.04) 95% CL with 300 fb⁻¹ (3000 fb⁻¹)
- Even tighter constraints combining with VH channels, which has now been done

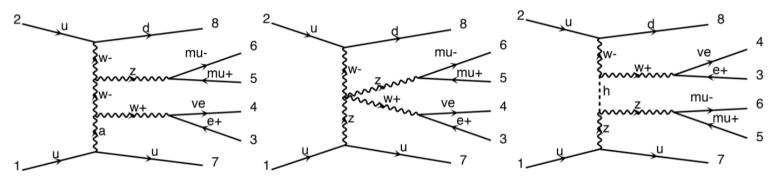

CMS-NOTE-2013-002

HIG-14-035

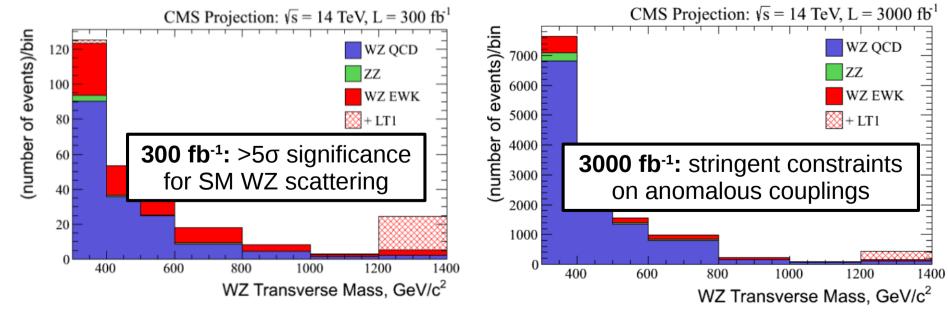
Projections: Rare Processes Rare Decays: $H \rightarrow \mu\mu$, $H \rightarrow J/\psi \gamma$

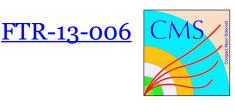
- H → μμ decay allows for a test of second generation leptonic coupling
 → Challenging experimentally due to large Drell-Yan background
- Very mild excess observed in the Run 1 search
 - → 3σ (5σ) evidence (observation) expected with ~450 fb⁻¹ (~1200 fb⁻¹)

- 2nd generation coupling in quark sector even more challenging
 - → BR(H → J/Ψ γ) tiny in the SM (~3x10⁻⁶), current limit 1.5x10⁻³
 - \rightarrow May require non-standard analysis techniques like data scouting / parking $_{\ell^+}$
 - → OR new ideas (many good ones in this conference!)


CMS Higgs Studies for ECFA workshop

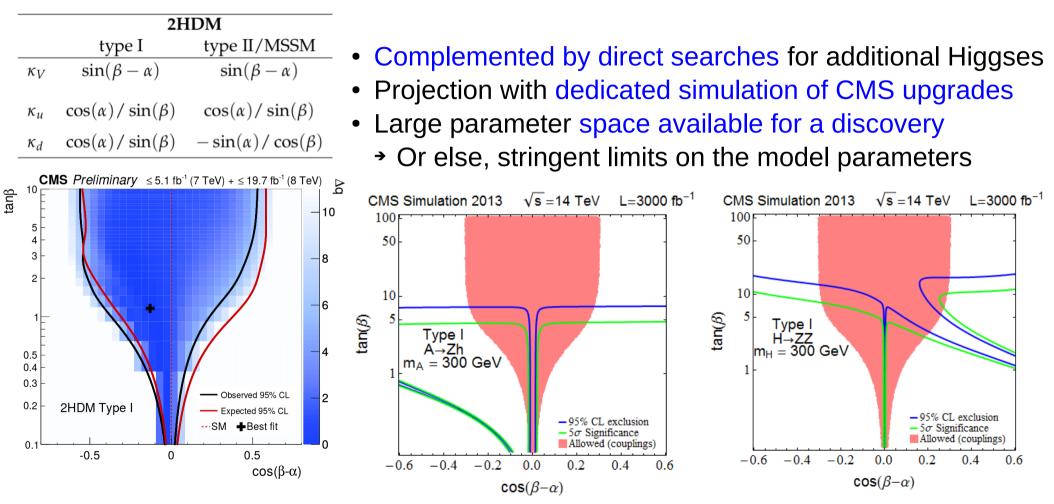
CMS Higgs Studies for ECFA workshop


David Sperka, on behalf of the CMS Collaboration


Projections: Rare Processes VV Scattering

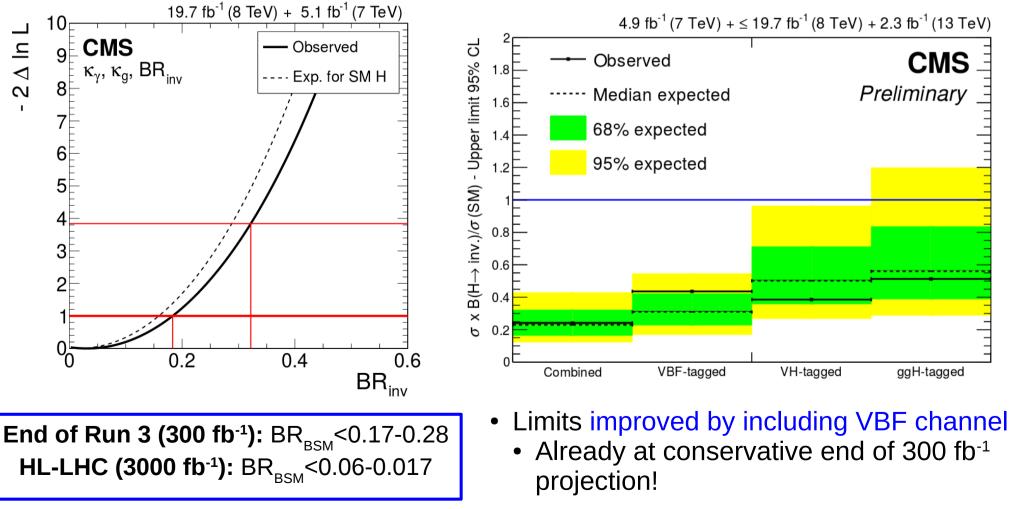
- Can test whether VV scattering unitarity is restored as predicted in the SM
 - → An important role of the Higgs boson
- New physics in the EWK Symmetry Breaking sector can alter the cross section

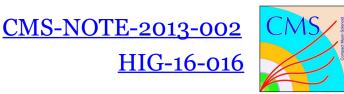
Projections carried out using dedicated simulation of upgraded CMS detector



Projections: BSM Extended Higgs Sector

- Many models of new physics (e.g. SUSY) predict an extended Higgs sector
- 2HDM parameters are constrained by Higgs couplings measurements
 - → Recent result from CMS using combined Run 1 couplings measurements

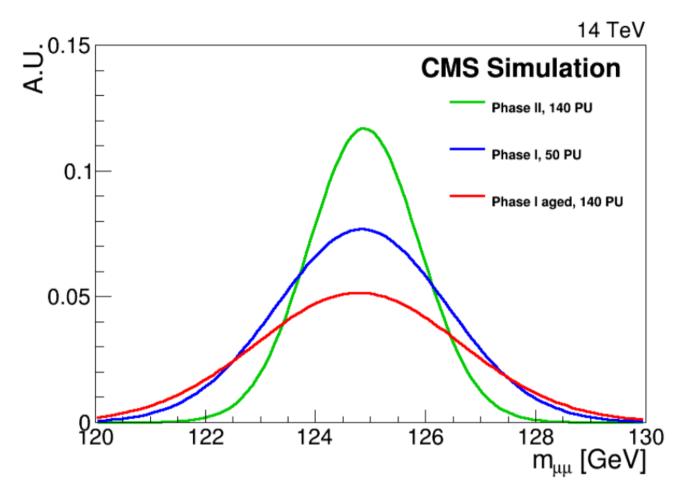



CMS Higgs Studies for ECFA workshop

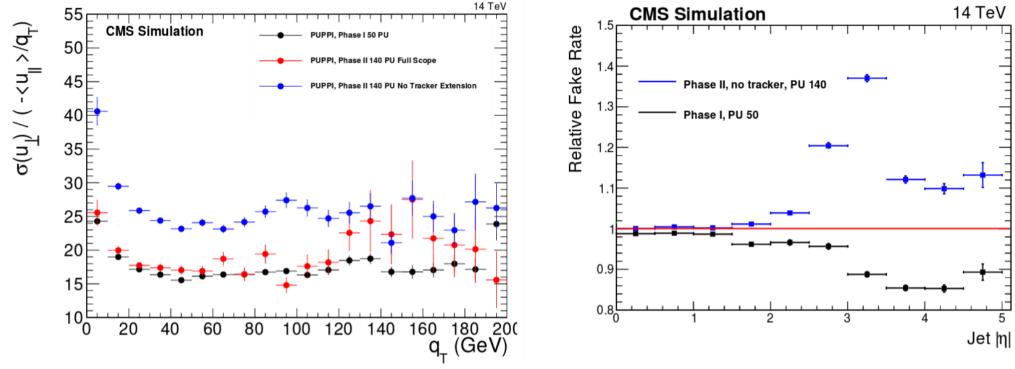
David Sperka, on behalf of the CMS Collaboration

Projections: BSM Invisible Decays

- Since the Higgs couples to all massive particles, it may be a portal to Dark Sector
 - Also, the $\mathsf{BR}_{_{\mathsf{BSM}}}$ is an important parameter in couplings measurements
- Projections assuming 2012 performance for 300, 3000 fb⁻¹
 - Using Higgs coupling combination and ZH-tagged direct search



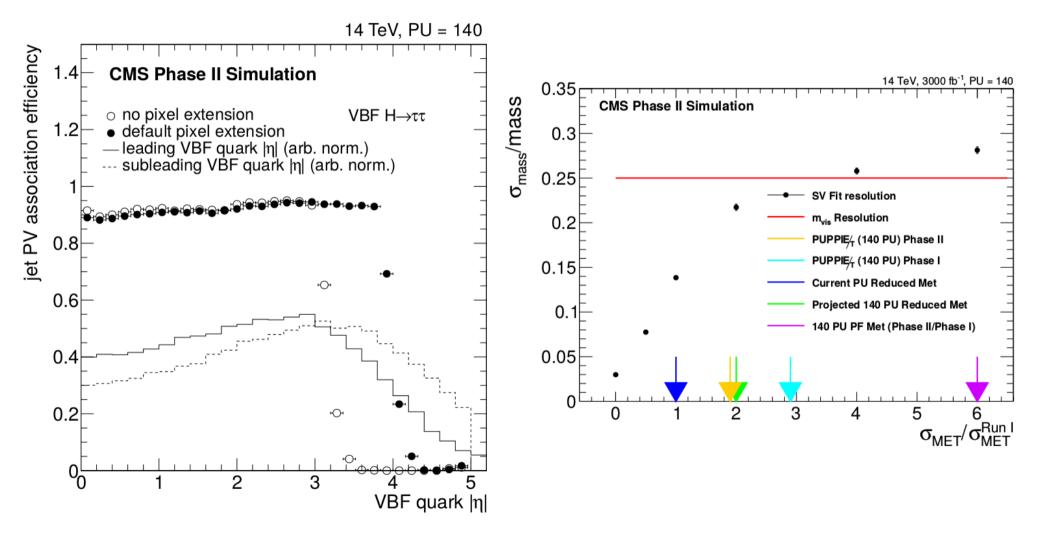
CMS Experiment Upgrades Phase 2 Upgrades: $H \rightarrow \mu \mu$


TDR-15-002

q_T (GeV)

CMS Higgs Studies for ECFA workshop

CMS Experiment Upgrades Phase 2 Upgrades: Jets/MET



LHCC-G-165

CMS Experiment Upgrades Phase 2 Upgrades: H→ττ

TDR-15-002

