

Higgs Properties at HL-LHC with ATLAS

Victoria Martin for the ATLAS Higgs Prospects Team

Introductory Remarks

- Unless stated, results presented are for SM Higgs boson with m_H =125 GeV.
- At 2014 ECFA, ATLAS presented a comprehensive results for Higgs boson couplings at HL-LHC.
 - More recent analyses focused on understanding the impact of the detector design and on rarer processes.

• Pile-up: 140 and/or 200, depending on analysis.

Main Analysis Technique for HL-LHC

Truth+Smear Technique

- Generate truth-only 14 TeV events
- Overlay the truth information with jets from the *pile-up library*:
 - Pile-up library consists of pile-up jets generated with full simulation (i.e. with detector response simulated)

⇒ <µ> = 140 or 200

- Reconstruct electron, muons, jets and missing- E_T from truth+overlay
- Smear the p_T and energy of reconstructed electrons, muons, jets and missing- E_T using appropriate *smearing functions*
- Apply trigger efficiencies
- Apply efficiencies for electron, muon and jet reconstruction

Smearing and efficiency functions

- \bullet dependent on p_T and η
- Functions are based on fully simulated samples samples using upgrade ATLAS detector geometry and high pile-up
- Approach has been validated by studies on limited number of physics studies comparing full sim and truth+smearing approach

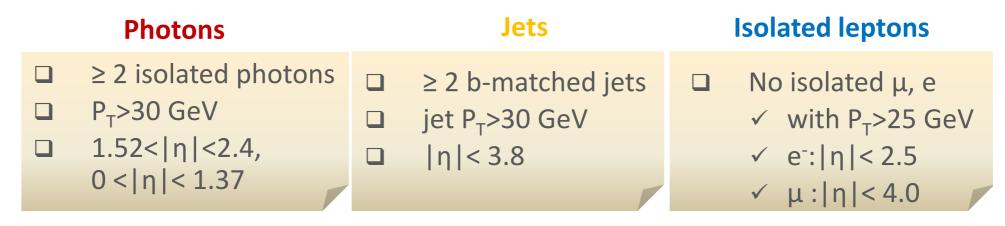
Jet techniques: pile-up reduction & flavour tagging

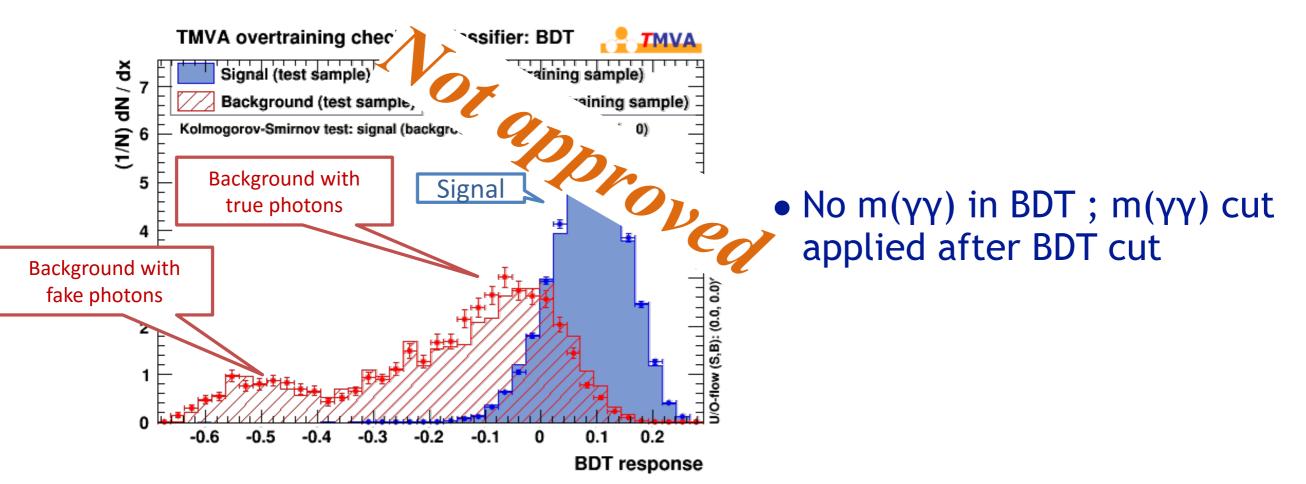
- At < μ > = 200, 4.8 pileup jets (p_T >30 GeV, $|\eta|$ <2.5) per event
- To reduce sensitivity to pile-up in jets we apply a *track-confirmation* requirement:
 - → Jets with $p_T < 100$ GeV and $|\eta| < 3.8$ (not *b*-jets) must have a jet that matches with a track that comes from the primary vertex.
- Reduces pile-up by factor ~50
- Parametrised *b*-tagging, based on Run 1 MV1 tagger, run on *truth-jets*
 - Provides a 70% working point for b-tagging
 - mistag rates for light and charm jets
 - \blacksquare dependent on p_T and η
 - This can very likely be improved ... (less mistags)

ATLAS Phase II Scoping Document

- Two VBF production analysis: each evaluated in the context of three different detector scenario
- Only **Reference** results presented in this talk.

		Scoping Scena	arios		
Detector System	Reference (275 MCHF)	Middle (235 MCHF)	Low (200 MCHF)		
Inner Tracker					
Pixel Detector	$ \eta \le 4.0$	$ \eta \le 3.2$	$ \eta \le 2.7$		
		1	✓		
Barrel Strip Detector	~	[No stub layer]	[No stereo in layers #2,#4 [Remove layer #3] [No stub layer]		
Endcap Strip Detector	~	✓ [Remove 1 disk/side]	✓ [Remove 1 disk/side]		
Calorimeters					
LAr Calorimeter Electronics	1	1	\checkmark		
Tile Calorimeter Electronics	1	\checkmark	1		
Forward Calorimeter	1	×	×		
High Granularity Precision Timing Detector	1	×	×		


Higgs Properties Overview


• New analyses since ECFA 2014 workshop

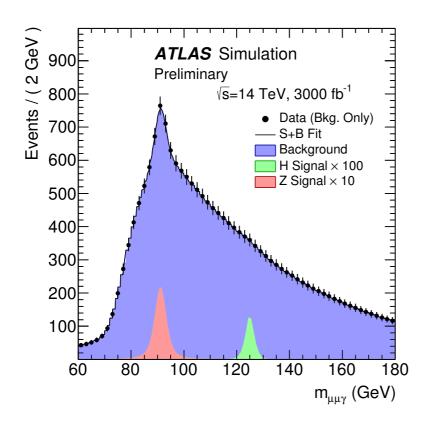
Analysis	Status / Publication
<i>bbH, H→үү</i>	In preparation
$H \rightarrow J/\psi \gamma$	ATL-PHYS-PUB-2015-043
$\mathbf{VBF} H \!$	ATL-PHYS-PUB-2016-018
$\mathbf{VBF} H \!$	ATL-PHYS-PUB-2016-008
Γ(H) from off-shell couplings (WW, ZZ)	ATL-PHYS-PUB-2015-024
$H \rightarrow ZZ \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ (for acceptance studies)	In ATLAS Phase-II ScopingDocument
$H \rightarrow \mu^+ \mu^-$	In preparation (might not make it to ECFA2016)

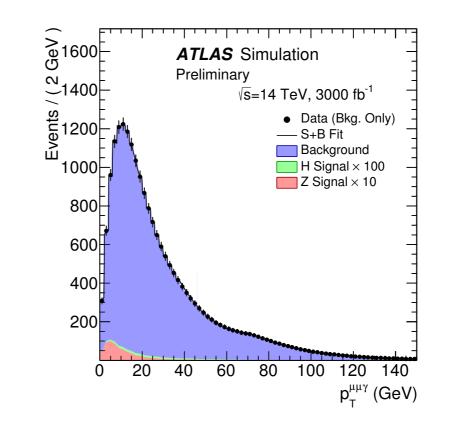
bbH, $H \rightarrow \gamma \gamma$

- Backgrounds: ZH, ttH, ttγ, tt, 4 jets, 3 jets+γ, 2 jets+γγ
- Jets faking photons is considered
- Cut-based and multivariate analysis

bbH, $H \rightarrow \gamma \gamma$ signal & background

Ctura a ma	120GeV < n	n _{di-photon} <							
Stream	Expected events	% of total back _b .	D						
$b\overline{b}\gamma\gamma$	110 ± 5	(7,72 ± 4,31)%	Dr						
3 $b\overline{b}j\gamma$ Signification	211 ± 105 ance (0,07	(14,73 <u>+</u> 8,16)% 65 0,0034	Proved						
$ H(\rightarrow bb)H(\rightarrow \gamma\gamma)$	9,07 ± 0,10	(0,63 ± 0,41)%	-4						
$jj\gamma\gamma$ Signal	366 ± 23	(25,61 ± 14,15)%							
$\int t\bar{t}\gamma$ Backgro	ound events 2,7 ± 1,4	(0,19 ± 0,16)%							
$t\bar{t}H(\rightarrow\gamma\gamma)$	31,2 ± 1,0	(2,19 ± 1,26)%							
tīl	0 ± 0	(0 ± 0)%							
$Z(\rightarrow b\overline{b})H(\rightarrow \gamma\gamma)$	10,31 ± 0,10	(0,72 ± 0,46)%							
4) c <i>̄</i> γγ	95 ± 5	(6,70 ± 3,75)%							
1 <i>ccj</i> γ	593 ± 419	([/] _ [、] 0 <u>+</u> 22,88)%							
Final and	alysis results af	ter m _{yy}							
Signific	cance (σ) 0,1	84 ± 0,028							
Signal	Significance (σ) 0,184 ± 0,028 Signal events 6,96 ± 0,07								
Backgr	ound events 14	429 ± 433	-4						


$H \rightarrow J/\psi \gamma$


 3000 fb^{-1} < μ > = 140

ATL-PHYS-PUB-2015-043

- SM expected BR($H \rightarrow J/\psi \gamma$): (2.9 ± 0.2) × 10⁻⁶
- Cut-based and Multivariate analysis
- Multivariate results: ~3 signal events, 1700 background

		Signal				
	Inclusiv					
	Mass Ran	ige [GeV]	$Z ightarrow \mu^+ \mu^- \gamma$	$H_{\gamma^*\gamma} \to \mu^+ \mu^- \gamma$		
	80-100	115-135			Ζ	Н
Cut Based Analysis	7800 ± 500	3500 ± 400	780 ± 100	15.1 ± 1.4	50±3	3.2±0.1
Multivariate Analysis		1700 ± 200		13.7 ± 1.3		2.9±0.1

No background systematics considered

	Expected branching ratio limit at 95% CL									
	$\mathcal{B}(H +$	$\rightarrow J/\psi\gamma)$ [10^{-6}]	$\mathcal{B}\left(Z\to J/\psi\gamma\right)\left[\ 10^{-7}\ \right]$							
	Cut Based	Multivariate Analysis	Cut Based							
$300 {\rm fb}^{-1}$	185^{+81}_{-52}	153^{+69}_{-43}	$7.0^{+2.7}_{-2.0}$							
$3000{\rm fb}^{-1}$	55^{+24}_{-15}	44^{+19}_{-12}	$4.4^{+1.9}_{-1.1}$							
		Standard Model ex	pectation							
	$\mathcal{B}(H +$	$\rightarrow J/\psi\gamma)$ [10^{-6}]	$\mathcal{B}\left(Z\to J/\psi\gamma\right)\left[\ 10^{-7}\ \right]$							
		2.9 ± 0.2	0.80 ± 0.05							

	Expected $\sigma \times \mathcal{B}$ limit at 95% CL							
	$\sigma (pp \to H) \times \mathcal{B} (H \to J/\psi\gamma) \text{ [fb]}$							
	Cut Based	Multivariate Analysis						
$300 {\rm fb}^{-1}$	$10.4^{+2.9}_{-4.5}$	$8.6^{+2.4}_{-3.7}$						
3000fb^{-1}	$3.1^{+0.9}_{-1.3}$	$2.5^{+0.7}_{-1.0}$						

$H \rightarrow J/\psi \gamma$ Results

ATL-PHYS-PUB-2015-043

VBF $H \rightarrow WW^* \rightarrow ev\mu v$

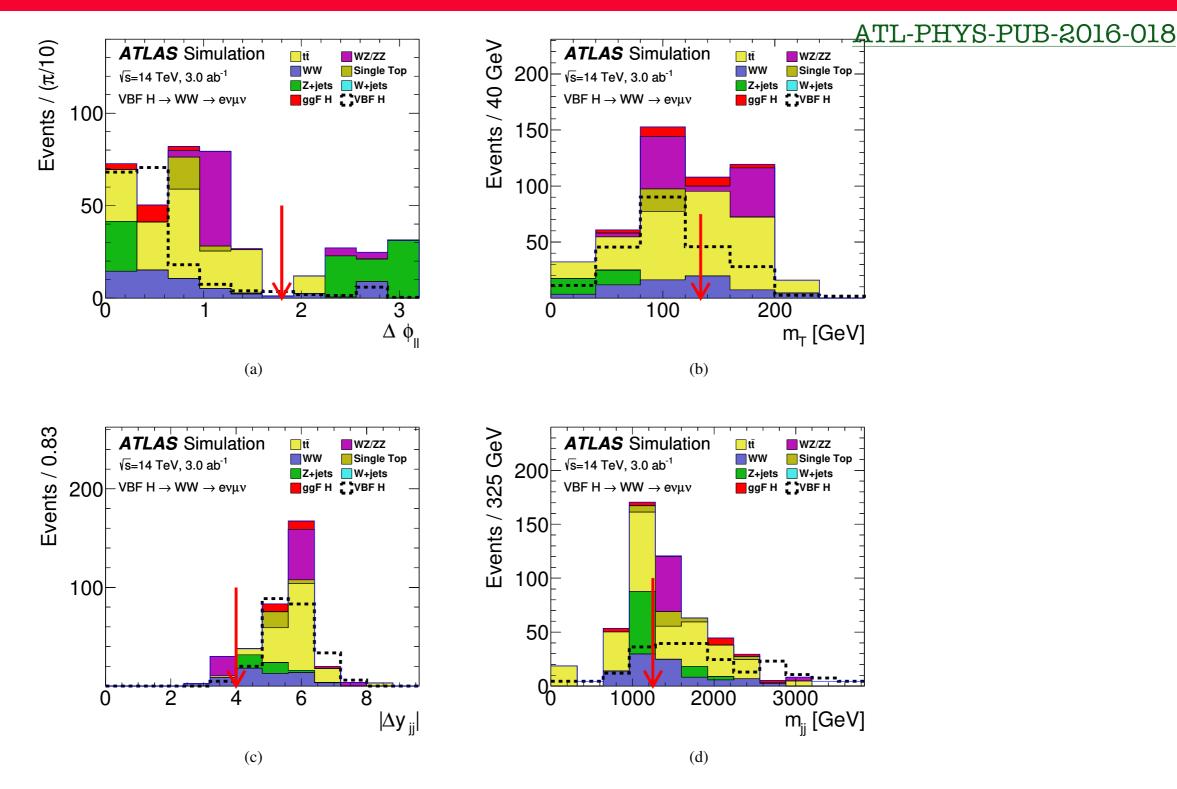
3000 fb⁻¹
$<\mu>=200$

ATL-PHYS-PUB-2016-018

	C	l • •
	Se	lections:
-		

Category	$N_{\text{jet}} \ge 2$
Pre-selection	Two isolated leptons (one <i>e</i> and one μ) with opposite charge Leptons with $p_{\rm T}^{\rm lead} > 25-28$ GeV and $p_{\rm T}^{\rm sublead} > 15$ GeV $m_{\ell\ell} > 10$ GeV
Jet-corrected-track- $E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 20 { m GeV}$
General selection	$p_T^{\text{jet}} > 70 \ (60) \text{ GeV lead (sublead)}$ $N_{\text{b-jet}} = 0 \ (\text{before pile-up jet removal})$ $p_T^{\text{tot}} < 20 \ \text{GeV}$ $Z/\gamma^* \rightarrow \tau\tau \text{ veto (Collinear approx. } m_{\tau\tau} < 50 \ \text{GeV})$
VBF topology	$m_{\rm jj} > 1250 \text{ GeV}$ and $ \eta_j > 2.0$, opposite hemisphere No jets ($p_{\rm T} > 30 \text{ GeV}$) in rapidity gap (CJV) Require both ℓ in rapidity gap
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$ topology	$m_{\ell\ell} < 60 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 1.8$ $m_{\rm T} < 1.07 \times m_H$

• 200 signal events and 410 background events

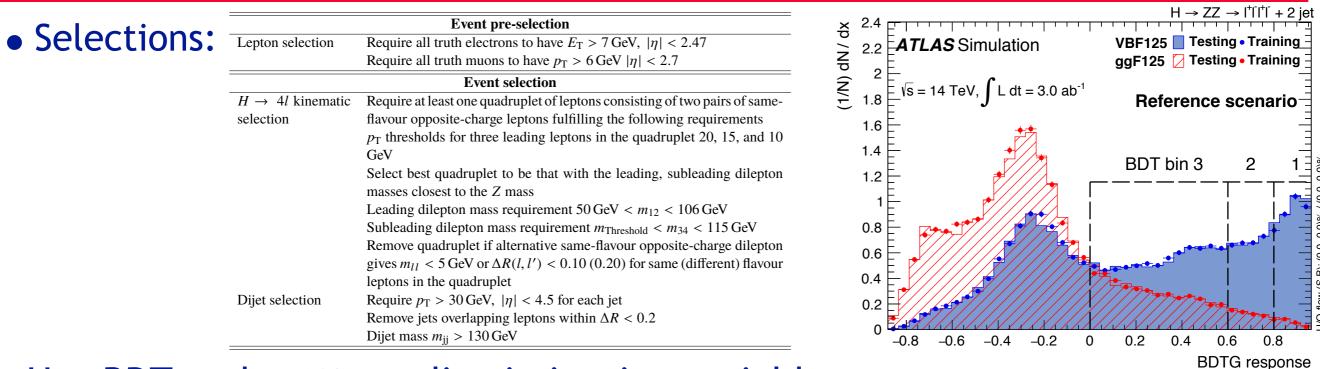

Scoping scenario	N _{VBF}	N _{bkg}	NggF	N_{WW}	N_{VV}	$N_{t\bar{t}}$	N_t	N_{Z/γ^*+jets}	N_{W+jets}
Reference	200	410	57	48	55	146	20	27	0

• Three different background uncertainties considered: same as Run 1 (Full), 1/2 of Run 1, and None

	$<\mu>=200$									$<\mu>=140$
Scoping scenario		Δ_{μ}		Sign	ifican	$ce(\sigma)$		Scoping scenario	Δ_{μ}	Significance (σ)
Signal unc.	Full	1/2	None	Full	1/2	None		Signal unc.	1/2	1/2
Reference	0.20	0.16	0.14	5.7	7.1	8.0		Reference	0.13	9.0

<u> = 200

VBF $H \rightarrow WW^* \rightarrow ev\mu v$ Plots



3000 fb⁻¹

 $<\mu>=200$

Figure 2: The (a) $\Delta \phi_{\ell\ell}$, (b) $m_{\rm T}$, (c) $|\Delta y_{jj}|$, and (d) $m_{\rm jj}$ distributions are shown with all signal region selections applied except for the one on the kinematic variable shown, and an arrow indicates the selection threshold. For $|\Delta y_{jj}|$, the arrow indicates a minimum threshold from the $|\eta_j| > 2$ and opposite-hemisphere jet requirements. All distributions assume the Reference scenario detector performance.

$VBF H \rightarrow ZZ \rightarrow 4\ell$

• Use BDT and $m(4\ell)$ as discriminating variables.

(d) Reference layout

3000 fb⁻¹

 $<\mu>=200$

- 192 signal events and 326 background events (ggF, qqZZ)
- Results for statistical uncertainty only and stat+signal QCD scale

 $Z_0 \approx n_{\rm VBF} / \sqrt{n_{\rm VBF} + n_{\rm ggF}}.$

Scoping scenario	<µ> = 200					
Reference	192 (168)	287 (140)	39 (16)	10.2	0.152	

Statisti	$<\mu>=200$					
Scoping scenario	VBF + $2j$ events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$	•
Reference	192	287	39	7.2	0.182	

VBF $H \rightarrow ZZ \rightarrow 4\ell$

3000 fb⁻¹

 $<\mu> = 140$

• Also results for pileup of 140

	$<\mu>=140$					
Scoping scenario	VBF + $2j$ events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$	
Reference	185 (173)	192 (121)	23 (12)	11.1	0.144	

Statistical uncertainty + QCD scale var. uncertainty (S-T method)						
Scoping scenario	VBF + $2j$ events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$	
Reference	185	192	23	7.7	0.170	

Table 10: Expected signal and background event counts for different jet tracking coverage scenarios at $I = 3000 \text{ fb}^{-1}$ and $\langle \mu \rangle = 140$ in the region (BDT score) > 0 and $120 < m_{4l} < 130 \text{ GeV}$. Shown also is the VBF signal significance and signal strength precision for each scenario. Background is composed of both ggF and qqZZ events, and scenarios are shown where only the statistical uncertainty (top), and also Stewart-Tackmann uncertainties (bottom) are considered in the fit. Bracketed terms represent the number of events in the signal region with two selected jets from the primary vertex.

 $H \rightarrow \mu \mu$ (not approved)

• Full simulation used to cross check truth+smearing approach

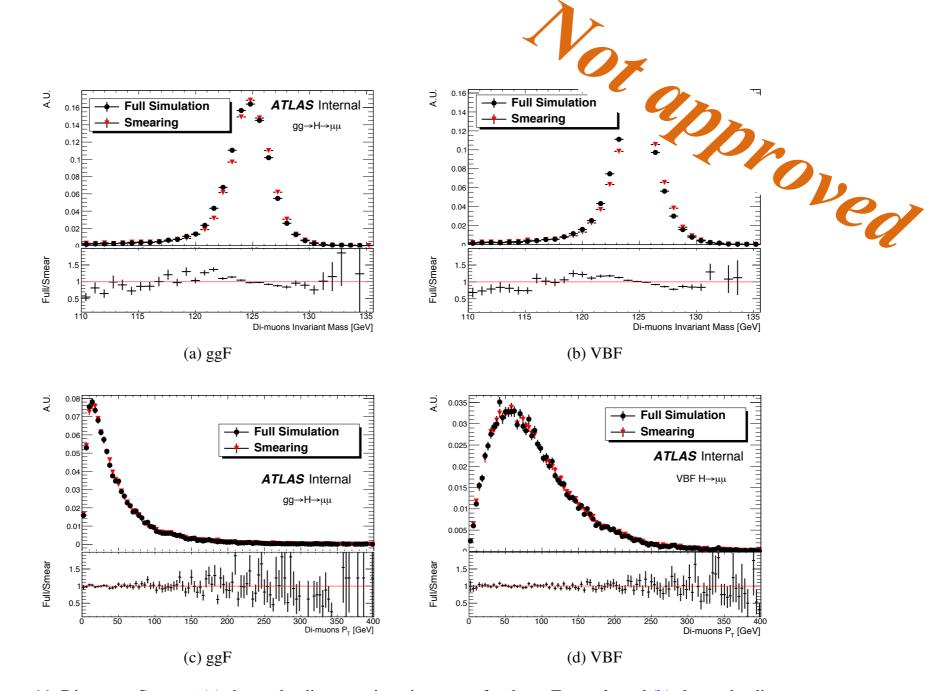
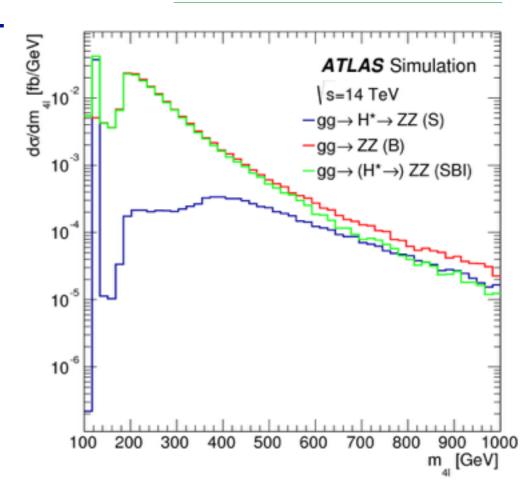


Figure 11: Di-muons System. (a) shows the di-muons invariant mass for the ggF sample and (b) shows the di-muons invariant mass for the VBF sample (c) shows the di-muons p_T for the ggF sample and (d) shows the di-muons p_T for the VBF sample

$H \rightarrow \mu \mu$ (not yet approved)

Process	-	2 rec. muons	$p_{\mathrm{T}}(\mu_1) > 25 \mathrm{GeV}$	muon triggers	$m_{\mu\mu} > 70 \text{ GeV}$	$110 < m_{\mu\mu} < 160 \text{ GeV}$
ggF	3.25e+04	2.01e+04	2.0	1.98e+04	1.97e+04	1.91e+04
VBF	2.46e+03	1.60e+03	1	1.58e+03	1.58e+03	1.53e+03
ggF+VBF	3.50e+04	2.17e+04	2	2.14e+04	2.13e+04	2.06e+04
Z+0p	4.55e+09	1.69e+09	1.61e+	^+ 09	1.55e+09	2.34e+07
Z+1p	1.17e+09	4.85e+08	4.79e+08	Dr.	4.61e+08	8.39e+06
Z+2p	4.21e+08	1.81e+08	1.79e+08	Dr	1.73e+08	3.36e+06
Z+3p	1.42e+08	6.21e+07	6.17e+07	6.u	- 94e+07	1.23e+06
Z+4p	4.52e+07	1.95e+07	1.94e+07	1.91e+	07+ئ	4.32e+05
Z+5p	1.75e+07	7.35e+06	7.32e+06	7.19e+06	5e+06	1.58e+05
Z+np	6.34e+09	2.45e+09	2.36e+09	2.33e+09	.27e+09	3.70e+07
top	1.46e+09	2.63e+07	2.50e+07	2.46e+07	1.48e+07	4.23e+06
WW	3.84e+07	2.39e+06	2.29e+06	2.25e+06	1.48e+06	4.25e+05
Total bkg	7.84e+09	2.48e+09	2.39e+09	2.36e+09	2.29e+09	4.16e+07

3000 fb⁻¹


 $<\mu>=200$

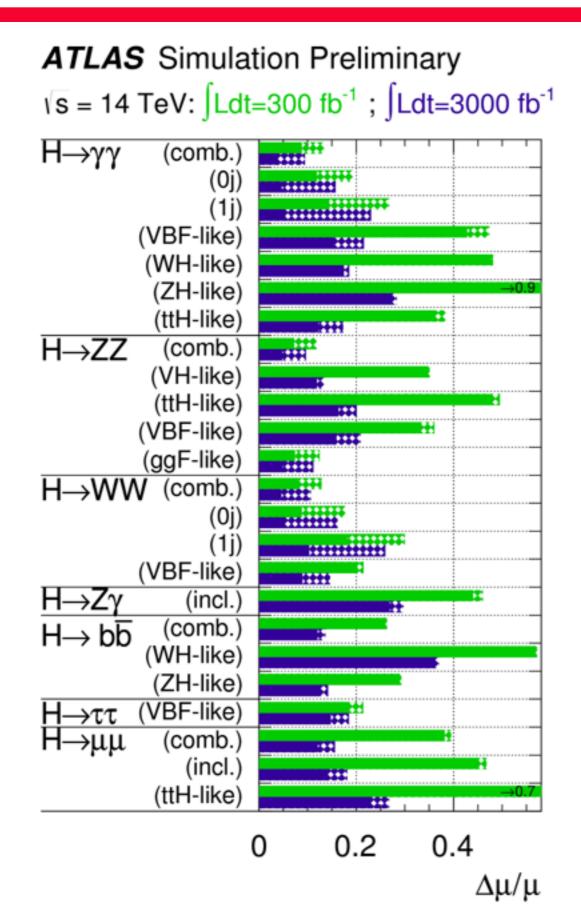
- In large mass window: 19,000 ggF signal events, 1500 VBF signal events, 40M Norg background events
- Fit *m(µµ)* shape

Scoping Scenario	$\langle \mu \rangle$	Overall significance	$\Delta \mu$	$\Delta \mu$	52
			w/ syst. errors	w/o syst. errors	·Or.
275M-Reference	200	8.6	+0.18 -0.16	+0.13 -0.13	ed
Scoping Scenario	$\langle \mu \rangle$	VBF significance	$\Delta \mu_{\mathrm{VBF}}$	$\Delta \mu_{\mathrm{VBF}}$	
			w/ syst. errors	w/o syst. errors	
275M-Reference	200	1.4	$+0.99 \\ -0.92$	+0.98 -0.92	

Γ_H from Off Shell Couplings

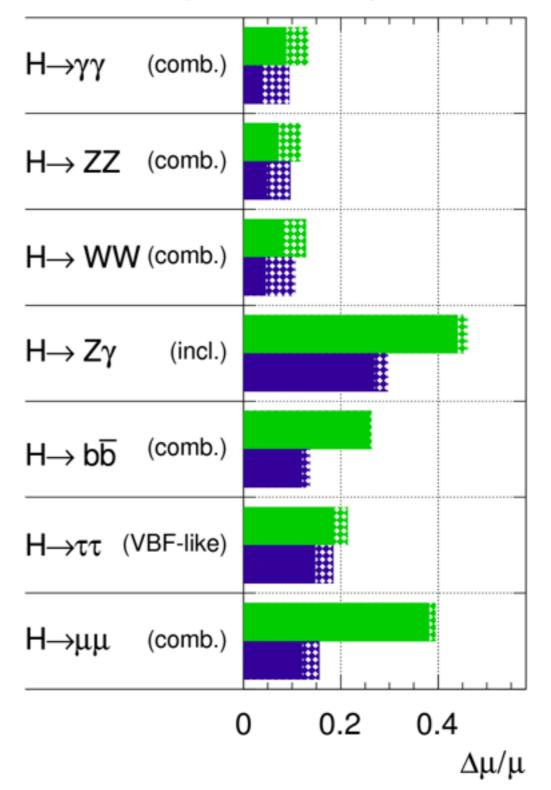
- $H \rightarrow ZZ \rightarrow 4\ell$: Use the interference between offshell and on-shell production in *WW* and *ZZ* final state to measure $\Gamma(H)$
- Depends on the knowledge of the k-factor between signal and background, $R_{H^*}^B$
- Also considered 10 % systematic uncertainty due to $qq \rightarrow ZZ$ normalisation
 - For 3000 fb⁻¹ and $\sigma(R_{H^*}^B) = 10\%$:
 - Stat uncertainties only: μ_{off-shell}=1.00^{+0.23}-0.27
 - Stat+syst uncertainties: $\mu_{off-shell}=1.00^{+0.43}-0.50$
 - Combined with on-shell measurement, assuming off-shell measurement dominates, for Γ = Γ_{SM} gives Γ_H= 4.2^{+1.5}-2.1 MeV (stat+sys)

ATL-PHYS-PUB-2015-024

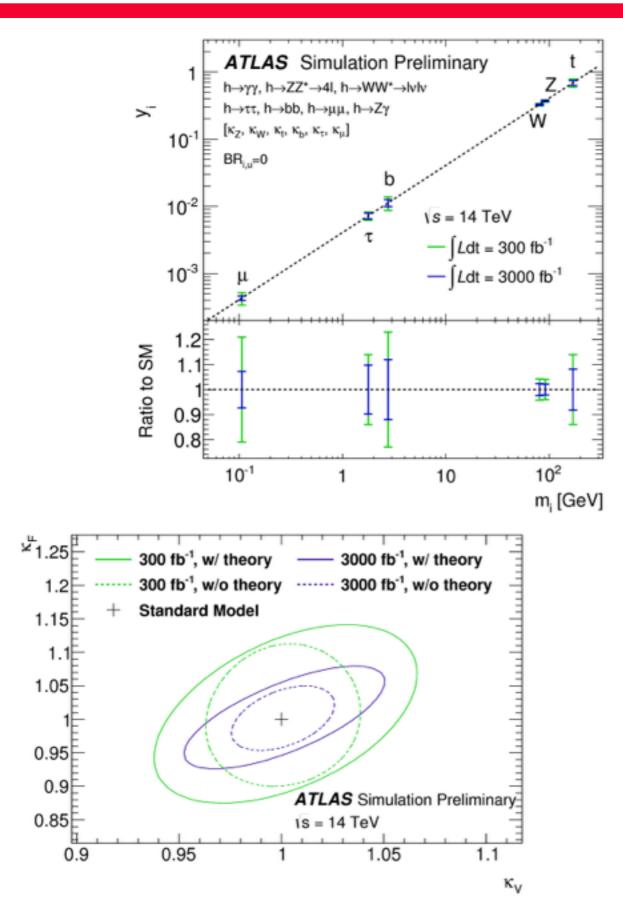

Higgs Properties Summary

• New analyses since ECFA 2014 workshop

Analysis	Results
$H \rightarrow J/\psi \gamma$	BR < 44 × 10 ^{−6} @95%
<i>bbH, H→γγ</i> (not approved)	0.2 σ
$VBF H \rightarrow W^+W^-$ $(<\mu>=200)$	Δμ/μ ≃ 14 to 20%
$VBF H \rightarrow ZZ \rightarrow 4\ell$ $(<\mu>= 200)$	Δμ/μ ≃ 15 to 18%
ggF: $H \rightarrow \mu^+ \mu^-$ (not approved)	Δµ/µ ≃ 13 to 18%
VBF: <i>H</i> →µ ⁺ µ [−] (not approved)	Δµ/µ ≃ 100%

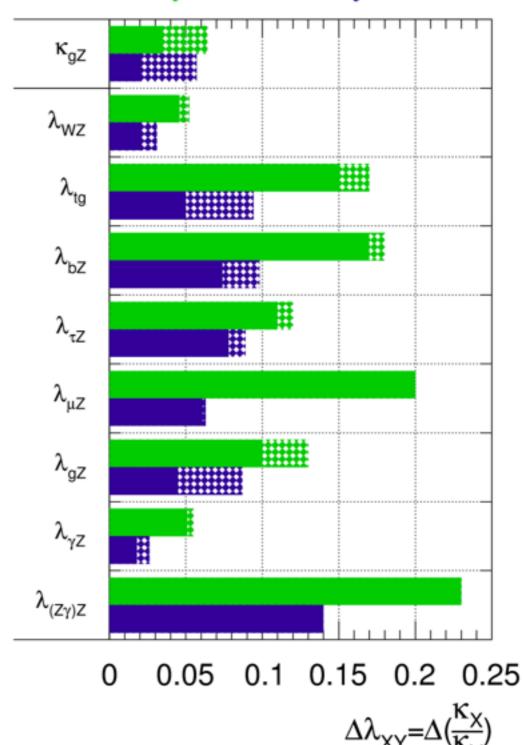


Backup: ECFA 2014 Couplings



ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$



Backup: ECFA 2014 Couplings

ATLAS Simulation Preliminary

√s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹

