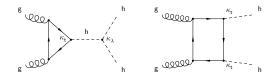
hh projections - CMS Status

Konstantin Androsov, <u>Olivier Bondu</u>, Maxime Gouzevitch on behalf of CMS-hh community

CP3 - UC Louvain

2016-09-15 - ECFA prep. meeting



DISCLAIMER

Should the slides ever end up outside of this meeting: this is an INFORMAL meeting, the content shown here represents INTERNAL WORK IN PROGRESS and as such has NOT BEEN APPROVED BY THE CMS COLLABORATION.

THESE SLIDES ARE CONFIDENTIAL AND NOT FOR DISTRIBUTION

Why hh?

The Standard Model hh production

- Mainly produced via gluon fusion (as for single h)
- Access to the self-coupling λ
 - Scalar potential structure
- Key property measurement of h(125)
- Major setback: very low production cross-section
 - $\sigma(pp \rightarrow hh)_{NNLO+NNLL}^{SM} = 33.45 \text{ fb} @ 13 \text{ TeV}$
 - Strong destructive interference of the two main diagrams: by (lack of) chance SM is almost the most destructive case...
- Start to be sensitive to SM at HL-LHC: upgrade strategy is decisive

Bibliography: existing public CMS-hh results

13 TeV nonresonant

- 2015 data (2.3-2.7 fb-1):
 - **HIG-16-026** 🗷 (bbbb)
 - HIG-16-024 □ (bbℓνℓνℓ)
- 2016 data (12.9 fb-1):
 - HIG-16-028
 □ (b b τ⁻ τ⁺)

8 TeV nonresonant (19.7 fb-1)

- 1603.06896 [□ (bb γγ)
- HIG-15-013 □ (b b τ⁻τ⁺)

14 TeV projections (3000 fb-1) ● FTR-15-002

Resonant results (for completeness):

b $\overline{b}\tau^{-}\tau^{+}$: HIG-16-013 Ø, HIG-16-029 Ø, Phys. Lett. B 755 (2016) 217 Ø, HIG-15-013 Ø, EXO-15-008 Ø

 $b\overline{b}\ell\bar{\nu}_{\ell}\bar{\ell}\nu_{\ell}$: HIG-16-011

bbbb: HIG-16-002 ☑, Phys. Lett. B 749 (2015) 560 ☑, Eur. Phys. J. C 76 (2016) 371 ☑

b̄bγγ: HIG-16-032 ⊠, 1603.06896 ⊠

FTR-15-002 : Delphes and other TP studies (1)

FTR-15-002 : 14 TeV studies

- Done for TP (not new)
- HL-LHC with 3 ab-1, <pu> = 140
- Performed to discuss the CMS Phase-II upgrade
- Only gluon-fusion production (90% of the total)
- Triggers assumed 100% efficient

$b\overline{b}\ell\bar{\nu}_{\ell}\bar{\ell}\nu_{\ell}$: 1500 expected events

- Study using Delphes
- Only tī background
- *m_{jj}* selection
- Cut on MVA, signal extracted via cut-and-count
- Uncertainty on signal yield in ≈ 180-500% range
- Document includes sensitivity study on background uncertainty

FTR-15-002 : Delphes and other TP studies (2)

$b\overline{b}\gamma\gamma$: 320 expected events

- Study using gen level info smeared to model Phase-II performance
- Lepton veto (tth rejection)
- Photon categories, no b-tag categories
- 2D ($m_{\gamma\gamma}, m_{jj}$) fit signal extraction
- Expected significance of 1.6 σ
- Uncertainty on signal yield of 67%
- Document includes sensitivity studies (eg Phase-I aged)

$b\overline{b}\tau^{-}\tau^{+}$: 9000 expected events

- $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ channels
- Study using Delphes (most backgrounds) and gen-smearing (tt)
- $m_{\tau\tau}$ and m_{jj} selection
- Signal extraction on
 - m_{T2} for $\tau_h \tau_h$
 - MVA output for $\tau_{\mu}\tau_{h}$
- Expected significance of 0.9 σ
- Unc. on signal yield of 105%
- Document includes a trigger study

Combination of $b\overline{b}\gamma\gamma$ and $b\overline{b}\tau^{-}\tau^{+}$

- Expected significance of 1.9 σ
- Uncertainty on signal yield of 54%

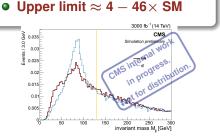
What is being projected in these slides? Projections at 13 TeV for 3000 fb-1

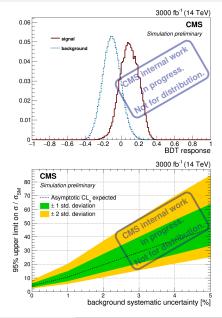
- From currently existing data analyses: only SM case
 - No λ_{hhh} scan (neither for your other favorite anomalous coupling)
- Delphes: new feasibility study for hh $\rightarrow b\overline{b}WW \rightarrow b\overline{b}jj\ell\bar{\nu_{\ell}}$
- No λ measurement performance projection based on 1607.04251 \blacksquare
 - Admittedly this is not either directly 'hh' projection anyway
- Resonant analysis: WED exclusion bounds from bbbb

Some considerations:

- $\sigma^{13\text{TeV}}_{SM\,\text{HH}} = 33.41^{+7.3\%}_{-8.4\%}$ fb at 13 TeV for $m_{\text{H}} = 125.09~\text{GeV}$
- $\sigma_{SM\,HH}^{14\text{TeV}} = 39.51$ fb at 14 TeV for $m_{\text{H}} = 125.09$ GeV (18% increase)
- Naively expect a factor $\frac{\sigma_{SM,HH}^{14\text{TeV}}/\sigma_{SM,HH}^{13\text{TeV}}}{\sqrt{14\text{TeV}/13\text{TeV}}} = 1.15$ boost in sensitivity by going to 14 TeV

O. Bondu (CP3 - UC Louvain)


Projections: Delphes analyses



hh $\rightarrow b\overline{b}$ VV $\rightarrow b\overline{b}\ell\bar{\nu}_{\ell}jj$, 14 TeV, 3000 fb-1, <pu> = 140

New feasibility study at 14 TeV

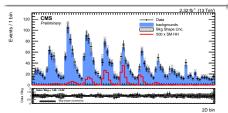
- Delphes (CMS Phase-II)
- Challenge of jet combinatorics
- tī background only
- PUPPI for PU jet removal
- MVA trained with 34 variables (jet multiplicities, p_T's, ∉_T, Δφ's, ΔR's, invariant masses)
- MVA cut and count

Projections: 13TeV analyses extrapolations bbbb

- $\mathbf{b}\overline{\mathbf{b}}\ell\bar{\nu}_{\ell}\bar{\ell}\nu_{\ell}$
- $\mathbf{b}\overline{\mathbf{b}}\tau^{-}\tau^{+}$
- $b\overline{b}\gamma\gamma$

Procedure

- Kinematics are SM-like
- Production only through gluon-fusion (90% of the total)
- Simplified datacards from the data analysis teams
 - Enforced requirement at preapproval time
- Harmonization of assumptions on common uncertainties
- Asimov dataset with signal strength fixed to the SM value
- For the final numbers: SM BR are assumed (from LHCHXSWG)
- NO combination of channels is attempted


Common uncertainties: the $H \rightarrow b\overline{b}$ leg

- theory Uncertainties divided by 2 for Scenario 2
 - lumi Assumed to be 1.5%
 - JES Assumed 1% accuracy
 - We had typically 2% in 2015 data considering the p_T range
 - JER Expected to **degrade by 10%** (considering the $p_{\rm T}$ range)
 - Applied to $b\overline{b}\gamma\gamma$ analysis which exploits directly $m_{b\overline{b}}$ resolution
 - Other final states: either do not exploit directly m_{bb} or suffers from other larger uncertainties: assuming unchanged JER
 - b-tag : Assume tagging uncertainty of 1%, unchanged WPs
 - Tracker upgrade planned for HL-LHC (compensating performance loss due to larger PU)
 - Nearly all selected signal jets are b-jets, typical b-tag uncertainty in 2015 was 1.5%: divide by a factor 1.5
 - MC-driven background estimates (eg tī): similarly to signal: eff. unc. scaling on a per-jet basis

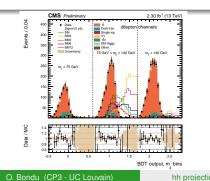
HIG-16-026 : hh $\rightarrow b\overline{b}b\overline{b}$

Analysis in a nutshell

- Analysis of 2015 data
- Huge QCD multijet background, data-driven estimate with event mixing
- B-tagging at trigger level
- MVA for signal extraction
- Upper limit at 3490 fb on σ × BR (≈ 308× SM)

Projection

- Main uncertainty: background statistics, scale with stat
- All other backgrounds: assumed unchanged wrt 2015 analysis

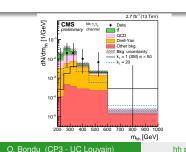

• Worry about trigger thresholds: may alter improvements of better b-tag or better knowledge of trigger efficiencies

HIG-16-024 : hh $\rightarrow b\overline{b}VV \rightarrow b\overline{b}\ell\bar{\nu}_{\ell}\bar{\ell}\nu_{\ell}$

Analysis in a nutshell

- Analysis of 2015 data
- Large tt , DY bkg, MC-driven
- Dilepton triggers
- TH2D (MVA, m_{jj}) signal extract.
- Exp. upper limit at 92.8 $^{+59.9}_{-33.4}$ fb on $\sigma \times BR$ (\approx 400 \times SM)

Projection

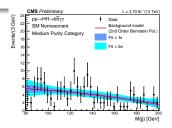

- All backgrounds would move to data-driven: neglecting unc. (too aggressive?)
- Assume unchanged trigger unc. (in absence of complete study)
- Preexisting 14 TeV result: similar sensitivity
- Analysis will be improved with further (lepton flavour) categories: current estimate is a bit optimistic

HIG-16-012 **E**: hh \rightarrow b $\overline{b}\tau^{-}\tau^{+}$

Analysis in a nutshell

- Ana. of 8TeV, 2015, 2016 data
- $\tau_e \tau_h$, $\tau_\mu \tau_h$ and $\tau_h \tau_h$ channels
- Large tt , DY bkg, MC-driven
- QCD background, data-driven
- kinematic fits, MVA cut, signal extracted on m_{hh}
- Upper limit at 7.2 pb on σ × BR (≈ 200× SM)

Projection


- 2016: SiStrip Tracker ineff.: safer projection with 2015 analysis
- Neglect QCD unc. (stat. dom.)
- Other bkg: from MC
- tī shape unc.: divided by 3 (understood p_T disagreement)
- Lepton uncertainties unchanged
- Preexisting 14 TeV result is better: understood
 - Uses MT2, which is not so great for sensitivity to BSM
 - Assumes 0 QCD, while here uncertainty is 0 (higher bkg yield)
 - Change in center of mass energy

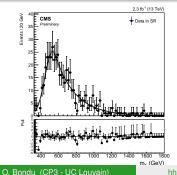
						NO.		4
	Channel	Median e	expected	Z-va	alue	OUpward und	certainty	2
		limits in μ_r		inter		as fraction of $\mu_r = 1$		
		Scenario 2	Stat. Only	Scenario 2	Stat. Only	Scenario 2	Stat. Only	
	$bb\tau^{-}\tau^{+}$	7.0	4.6	0.30	0,44 9	3,5	2.3	
						dis		
hh proiections - CMS status			2016	-09-15 - E	ECFA pre	paration	15/18	3

HIG-16-032 : hh $\rightarrow b\overline{b}\gamma\gamma$

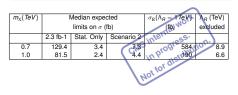
Analysis in a nutshell

- Analysis of 2015 data
- $\gamma\gamma + jj, \gamma j + jj$ bkgs, data-driven
- Same photons as in h(γγ) analysis (trigger, ID, iso, unc.)
- Two b-tag categories, cut on \tilde{M}_X
- 2D ($m_{\gamma\gamma}, m_{jj}$) fit signal extraction
- Exp. upper limit at 7.85 fb on $\sigma \times BR ~(\approx 90 \times SM)$

Projection


- Assume same bkg shape
- Bkg unc. scale with $1/\sqrt{L}$
- Unc. for $h(\gamma\gamma)$ leg follow $h(\gamma\gamma)$ projection
 - Signal photons are 90% in the barrel: neglect endcap eff. degradation
- Preexisting 14 TeV result: similar sensitivity

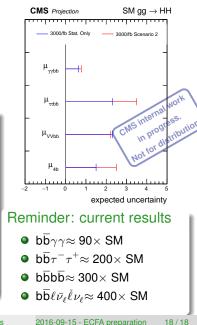
HIG-16-002 :: $X \rightarrow hh \rightarrow b\overline{b}b\overline{b}$


Analysis in a nutshell

- Analysis of 2015 data
- Huge QCD multijet background, data-driven estimate from a fit in side-bands
- B-tagging at trigger level
- kin. fit, *m*_{bbbb} for signal extraction

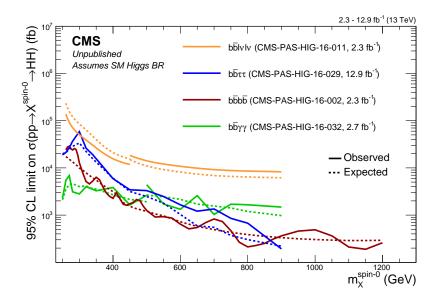
Projection

- Same systematic scaling as for $b\overline{b}\gamma\gamma$ analysis
- Results are systematics-limited
- Compare to radion production in bulk WED
- Mass scale Λ_R, interpreted as the ultraviolet cutoff of the model, excluded up to 9 TeV!

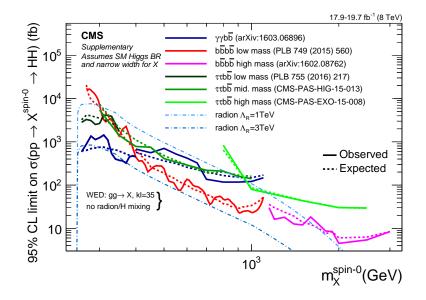

hh projections - CMS status

Summary

Channel	Median expected		Z-va	alue	Upward uncertainty					
	limits in μ_r				as fraction of $\mu_r = 1$					
	Scenario 2	Stat. Only	Scenario 2	Stat. Only	Scenario 2	Stat. Only				
bbγγ	1.3	1.3	1.6	1.6 3	0.77	0.64				
$b\overline{b}\tau^{-}\tau^{+}$	7.0	4.6	0.30	0,44	ss 8.5	2.3				
bblvlvl	4.7	4.6	0.45	S 0.47 0	ess 2,201.	2.3				
bbbb	7.0	2.9	0.39	9 0.47 og	2.5	1.5				
	Notfor deal									
	Not									

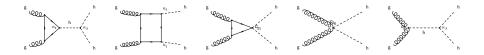

At this stage:

- $b\overline{b}\gamma\gamma$: similar to TP, ok
- $b\overline{b}\tau^{-}\tau^{+}$: worse than TP: **understood**. ok
- $b\overline{b}\ell\bar{\nu}_{\ell}\ell\bar{\nu}_{\ell}$: similar to TP, but may be a bit optimistic, being checked
- bbbb: tough to say (trigger + QCD), but analysis and projection are conservative: ok
- $b\overline{b}jj\ell\bar{\nu}_{\ell}$: looks challenging
- $X \rightarrow b\overline{b}b\overline{b}$; serious dent in WED models



BACKUP

Resonant analyses: Run II


Resonant analyses: Run I

SM hh production and EFT (2)

There is hope yet: we have some leeway...

- Self-coupling λ predicted by SM, but not constrained experimentally
- There exist other couplings in BSM scenarios: c_{2t}, c_{2q}, c_q
- Some freedom on κ_t

5D parameter scan: κ_{λ} , κ_t , c_{2t} , c_{2g} , c_g

- Cross-section can vary sensibly: $[10^{-1}, 10^4] \times \sigma(pp \rightarrow hh)^{SM}$
- Signal shape can be significantly different from SM

O. Bondu (CP3 - UC Louvain)

hh projections - CMS status

Scan 5D parameter space: the clustering method

It is impractical to generate a 5D grid of signal samples

- LO generation and various theoretical arguments: most of the physics is contained in the m_{hh} spectrum
 - and somewhat in $\cos(\theta)_{CS}^*$
 - Extensive discussions in a TH-EXP workshop last year I

The cluster analysis JHEP04(2016)126 🗷

- Exp. analyses sensibility depend on the signal shape
- Cluster regions of the parameter space with similar kinematics
- Define benchmark points (BM): representative of a cluster
- Injection of the 12 benchmarks in the CMS full-sim MC prod.

Public results

• Used for both HIG-16-028 \square (b $\overline{b}\tau^-\tau^+$) and HIG-16-024 \square (b $\overline{b}\ell\bar{\nu}_\ell\bar{\ell}\nu_\ell$)