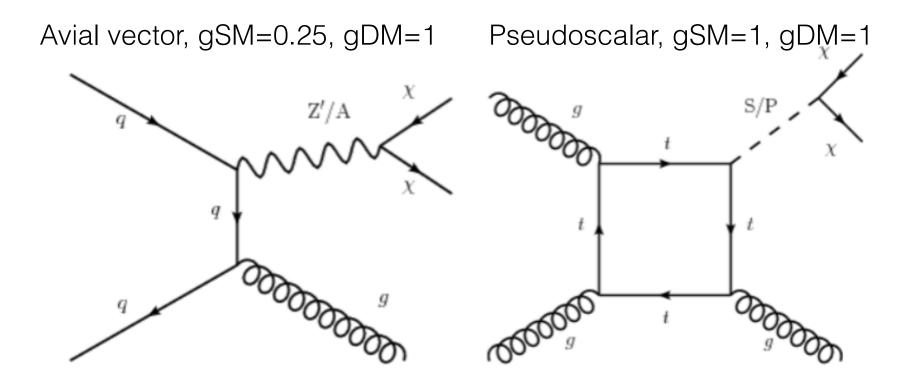
## Dark Matter studies for CMS Phasell Upgrade

#### Sarah Malik (Imperial College London), on behalf of CMS monojet group


N. Daci<sup>1</sup>, I. De Bruyn<sup>1</sup>, B. Clerbaux<sup>2</sup>, D. Vannerom<sup>2</sup>, S. Rahatlou<sup>3</sup>, E. Di Marco<sup>3</sup>, M. Cipriani<sup>3</sup>, V. Sharma<sup>4</sup>, A. Vartak<sup>4</sup>, R. Gerosa<sup>4</sup>, L. Soffi<sup>5</sup>, P. Wittich<sup>5</sup>, N. Wardle<sup>6</sup>, J. Marrouche<sup>6</sup>, T. Du Pree<sup>6</sup>, M. Cremonesi<sup>7</sup>, B. Jayatilaka<sup>7</sup>, J. Lewis<sup>7</sup>, N. Tran<sup>7</sup>, D. Abercrombie<sup>8</sup>, B. Allen<sup>8</sup>, Z. Demiragli<sup>8</sup>, G. Gomez-Ceballos<sup>8</sup>, D. Hsu<sup>8</sup>, Y. Iiyama<sup>8</sup>, D. Kovalskyi<sup>8</sup>, B. Maier<sup>8</sup>, S. Narayanan<sup>8</sup>, C. Paus<sup>8</sup>, K. Hahn<sup>9</sup>, S. Sevova<sup>9</sup>, K. Sung<sup>9</sup>, M. Trovato<sup>9</sup>, J. Pazzini<sup>10</sup>, M. Zanetti<sup>10</sup>, A. Zucchetta<sup>10</sup>, N. Akchurin<sup>11</sup>, E. Gurpinar<sup>11</sup>, K. Lamichhane<sup>11</sup>, S. Kunori<sup>11</sup>, S. W. Lee<sup>11</sup>, S. Undleeb<sup>11</sup>, I. Dumanoglu<sup>15</sup>, Y. Guler<sup>15</sup>, B. Tali<sup>16</sup>, T. R. Fernandez Perez Tomei<sup>12</sup>, P. G. Mercadante<sup>13</sup>, C. S. Moon<sup>12</sup>, S. F. Novaes<sup>12</sup>, A. S. Santos<sup>13</sup>, S. Qazi<sup>14</sup>, and W. A. Khan<sup>14</sup>

<sup>1</sup> Université libre de Bruxelles <sup>2</sup> Vrije Universiteit Brussel <sup>3</sup>Sapienza, INFN Rome <sup>4</sup> University of California, San Diego <sup>5</sup> Cornell University <sup>6</sup>CERN <sup>7</sup> Fermilab <sup>8</sup> Massachusetts Institute of Technology <sup>9</sup> Northwestern University <sup>10</sup> University of Padova <sup>11</sup> Texas Tech University <sup>12</sup> Universidade Estadual Paulista, Sao Paulo, Brazil <sup>13</sup> Universidade Federal do ABC, Sao Paulo, Brazil 14 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan <sup>15</sup>Cukurova University, Turkey <sup>16</sup>Cukurova and Adiyaman University



Imperial College London

- One of key goals of HL-LHC shed light on dark matter
- Simplest signature for generic pair production of dark matter at collide: monojet+MET
- Goal: Study reach of HL-LHC in search for dark matter for some representative simplified models of DM using a monojet search

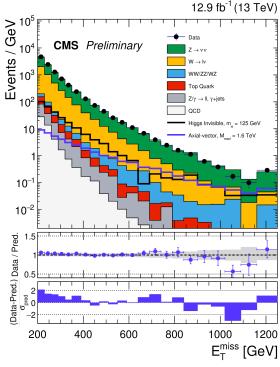


Suppressed in direct detection <sup>2</sup> Collider provides complementary sensitivity

Not accessible to direct detection



CMS-EXO-16-037


- Events pass the E<sup>miss</sup><sub>T</sub> triggers described in Table 5
- Events pass the E<sup>miss</sup> filters described in [21] (suppress detector noise and beam backgrounds)

Imperial College

London

- Leading ak4 jet in the event has  $p_T > 100$  GeV and  $|\eta| < 2.5$
- Leading ak4 jet in the event passes the cleaning cuts described in Sec. 5.3
- $\Delta \phi$ (jet,  $E_T^{miss}$ ) > 0.5 for the first four leading ak4 jets in the event (suppress QCD)
- Require  $|E_{T calo}^{miss} E_{T PF}^{miss}| / E_{T calo}^{miss} < 0.5$
- Lepton veto i.e. no loose electrons, muons or taus (suppress electroweak backgrounds)
- Photon veto i.e. no loose photons (suppress electroweak backgrounds Z(νν)γ+jets, W(ℓν)γ+jets)
- B-jet veto (suppress top background)
  - Recoil > 200 GeV (E<sub>T</sub><sup>miss</sup> threshold consistent with the trigger turn-on) 22 exclusive bins in MET

| МЕТ             | MET              | MET              | MET           | MET     | MET     |
|-----------------|------------------|------------------|---------------|---------|---------|
| 200-230         | 230-260          | 260-290          | 290-320       | 320-350 | 350-390 |
| МЕТ             | МЕТ              | MET              | MET           | MET     | MET     |
| 390-430         | 430-470          | 470-510          | 510-550       | 550-590 | 590-640 |
| MET             | MET              | MET              | MET           | MET     | MET     |
| 640-690         | 690-740          | 740-790          | 790-840       | 840-900 | 900-960 |
| MET<br>960-1020 | MET<br>1020-1090 | MET<br>1090-1160 | MET<br>> 1160 |         |         |





- Use the background yields and systematics provided by CMS-EXO-12-037
- Generate dedicated signal samples with 13 TeV, pass through Pythia8, Run 2 CMS detector card and implementation of CMS monojet analysis
- Compare the event yields obtained for a typical signal model

POWHEG v2 13 TeV Pythia v8 Pythia v8 Delphes selection

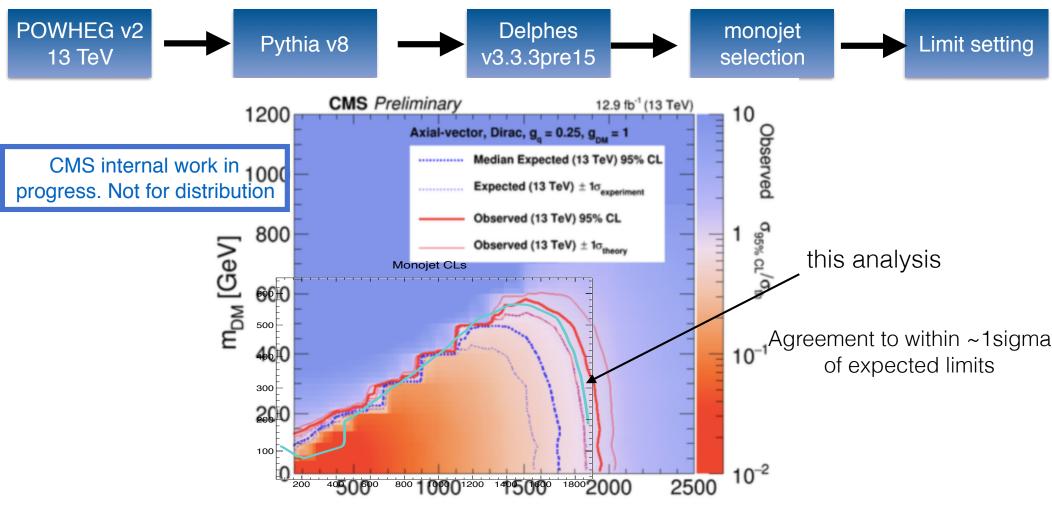
Axial vector (Mmed = 1500 GeV, MDM= 1 GeV)

| EXO-16-037 | This analysis                                                                                    | ratio                                                 |
|------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 61992.3    | 75718.2                                                                                          | 0.818724                                              |
| 36447      | 44935.9                                                                                          | 0.811089                                              |
| 21339.9    | 25277.7                                                                                          | 0.844218                                              |
| 12536.7    | 12966.7                                                                                          | 0.966838                                              |
| 7599.91    | 7551.76                                                                                          | 1.00638                                               |
| 4438.48    | 4662.5                                                                                           | 0.951953                                              |
| 2621.89    | 2787.34                                                                                          | 0.940642                                              |
| 1518.06    | 1530.74                                                                                          | 0.991716                                              |
| 886        | 956.577                                                                                          | 0.926219                                              |
| 631        | 529.447                                                                                          | 1.19181                                               |
| 1127.73    | 982.25                                                                                           | 1.14811                                               |
|            | 61992.3<br>36447<br>21339.9<br>12536.7<br>7599.91<br>4438.48<br>2621.89<br>1518.06<br>886<br>631 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

After event selection shown in previous slide, normalized to 3000 fb<sup>-1</sup>

Imperial College

London


Yields are consistent within  $\sim 20\%$ 



Imperial College

London

- Use the background yields and systematics provided by CMS-EXO-12-037
- Generate dedicated signal samples with 13 TeV, pass through Pythia8, Run 2 CMS detector card and implementation of CMS monojet analysis and limit setting procedure



\*Limit setting procedure combines the 22 exclusive MET bins to produce a limit, but does not include correlations in systematic uncertainties between these bins.



Imperial College

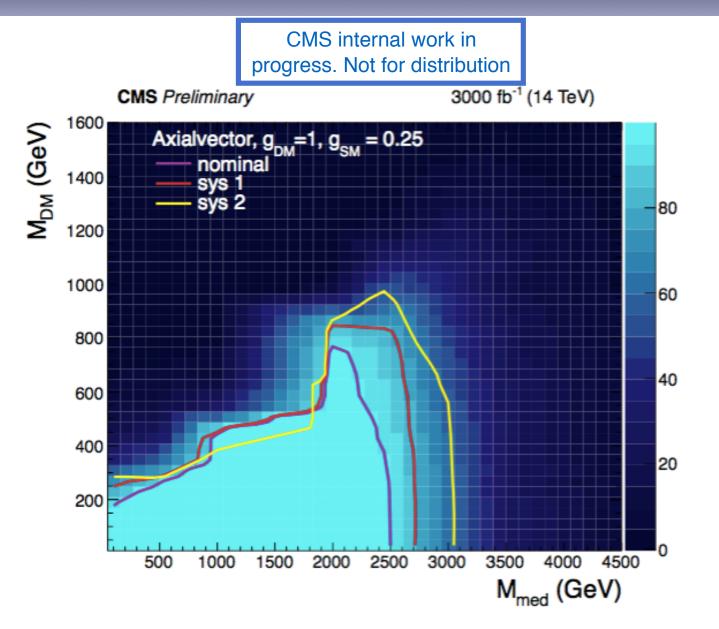
london

Pre-selection - closely resembles current monojet analysis, exception pt(j1) cut increased to 250 GeV for AV and 200 GeV for PS

 $\begin{array}{l} \mbox{ECFA selection} \\ \mbox{AK4/PUPPI jets, pt(j1) > 250 for AV (200 for PS), } |\eta| < 2.5 \\ \mbox{$\Delta\phi$(jet, MET) > 0.5$} \\ \mbox{veto electrons, $p_T > 10, } |\eta| < 2.4 \\ \mbox{veto muons, $p_T > 10, } |\eta| < 2.5 \\ \mbox{veto taus, $p_T > 18, } |\eta| < 2.3 \\ \mbox{b-jet veto, 'Loose', $p_T > 15, } |\eta| < 2.5 \\ \mbox{MET > 200 GeV} \end{array}$ 

- 22 exclusive MET bins for PS, binning is same as current analysis
- For AV, the binning is changed to 100 GeV bins and extended to higher MET
- Only OPU scenario considered for this study
- Only V+jets background considered dominant one for this search.
- Cross-sections scaled to account for higher order QCD corrections and also a correction at the level of 20-25% applied to high MET region to account for higher order electroweak corrections




- For the axial vector model, MET binning for ECFA study extended to MET > 2.4 TeV. The systematic scenarios considered:
- 'nominal': assume that the level of systematic control of the MET distribution will be the same at HL-LHC (with the extended range to > 2 TeV) as the current analysis (where last bin is 1.2 TeV)
- sys 1 : systematic uncertainties from the 'nominal' scenario are reduced by factor of 2.
- sys 2 : systematic uncertainties from the 'nominal' scenario are reduced by a factor of 4.

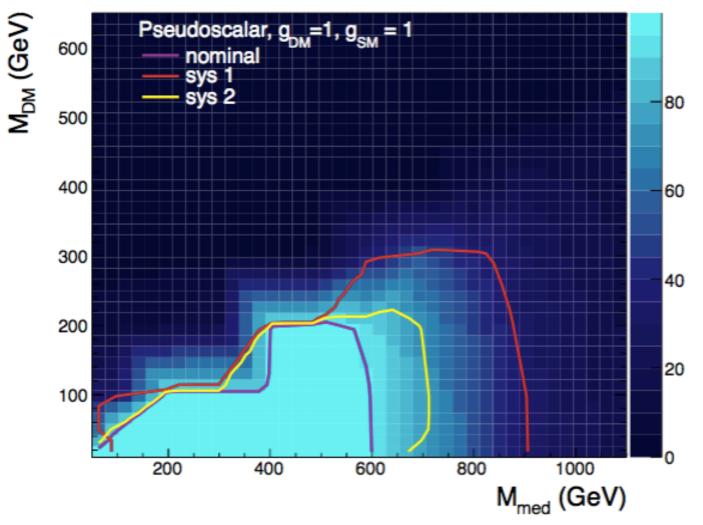
For the pseudo scalar model, MET binning for ECFA study is kept same as EXO-16-037. The systematic scenarios considered:

- 'nominal': scale the systematics at low MET which are dominated by lepton ID/ISO to HL LHC recommendation, scale the systematics at high MET by lumi.
- sys 1 : scale the current systematic uncertainties in the full MET range by luminosity.
- sys 2 : systematic uncertainties from the 'nominal' scenario are reduced by a factor of 2.

# CCMS unit reduced

### **ECFA** projections for axial-vector



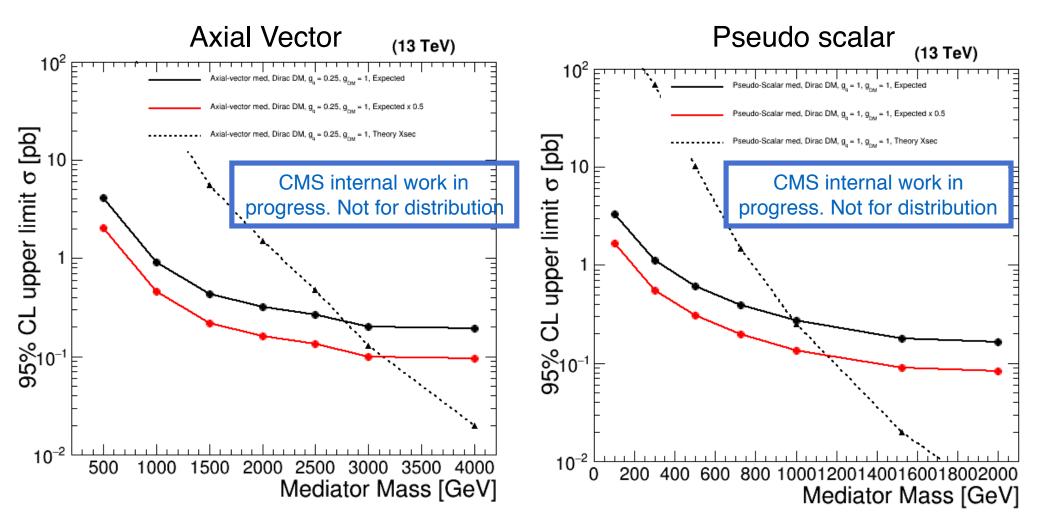



CMS internal work in progress. Not for distribution

CMS Preliminary

3000 fb<sup>-1</sup> (14 TeV)

Imperial College London






### **Projections : Cross-section limits**

Imperial College

London



For Axial Vector & Pseudoscalar, the xsec limit starts flattening out after 3 TeV and 1.5 TeV respectively



mperial College

- Projections for 14 TeV 3000 fb-1 with Phase 2 detector simulation made for monojet analysis, focusing on some key benchmark simplified models of dark matter
- Event selection optimized for HL-LHC and several scenarios for the evolution of the systematic uncertainties considered.
- Validations performed with current analysis good agreement observed
- ➡ So far, focused only on 0PU, studies with 200PU forthcoming