Electroweak and QCD Measurements at the Large Hadron Collider

João Guimarães da Costa IHEP, Chinese Academy of Sciences

Birmingham, 3 April 2017

Why Standard Model Physics?

Search for deviations from SM:

- Many new physics models reveal deviations from SM si QCD
- Example: contact interactions versus bump-hunting sear

Establish:

- Understanding of backgrounds to new physics searche
- Improved proton PDFs

Explore the SM self consistency:

Measure its parameters with high-precision

Now that the Higgs was found, measuring the top and W mass precise enough will be an enduring challenge

How we do it?

Probes

Jets

inclusive dijets multijets jet sub-structure HF production

Photons

inclusive diphotons γ + jets $\gamma + HF$

Hadrons

Electroweak parameters

Combine analyses, e.g. to obtain the most information about PDFs

Physics Non-perturbative QCD

Perturbative QCD

Proton PDF

Valence, strange quarks Gluons

EWK corrections

Probes

W/Z Bosons

inclusive V+jets Ratio W/Z + jets W and Z + HF

Top quark

Dibosons WW, WZ, ZZ, Wy, Zy

Higgs

How we do it?

Probes

Jets

inclusive dijets multijets jet sub-structure HF production

Photons

inclusive diphotons γ + jets $\gamma + HF$

Hadrons

Many topics left out:

SM Higgs production Heavy-flavour physics (B-physics) Heavy-ion physics (physics in dense media)

Physics Non-perturbative QCD

Perturbative QCD

Proton PDF

Valence, strange quarks Gluons

EWK corrections

Electroweak parameters

Probes

W/Z Bosons inclusive V+jets Ratio W/Z + jets W and Z + HF

Top quark

Dibosons WW, WZ, ZZ, W γ , Z γ

Higgs

Combine analyses, e.g. to obtain the most information about PDFs

Inclusive Jet Cross Sections

NLO QCD predictions describe data over 9 orders of magnitude! Jet inclusive data starts to constrain gluon PDFs (CT14, MMHT14, NNPDF3.0, HERAPDF2.0)

Measurement done for two jet algorithms:

- anti-k_t R=0.4
- anti-k_t R=0.6

NLO QCD prediction with the MMHT2014 PDF set corrected for **non-perturbative** and electroweak effects

Dominant uncertainty is the jet energy scale

5

Inclusive jet cross section

Triple differential dijet cross section

(5)

New

 $p_{
m T,\,avg}$ / GeV

Triple differential dijet cross section

New

CMS SMP-16-011

Triple differential dijet cross section

Impact of CMS dijet measurement on PDFs: HERA I+II

Extraction of Strong Coupling Constant (as)

PDF fit repeated with as as a free parameter

Inclusive 2-jet, 3-jet and 4-jet azimuthal correlations in pp collisions at $\sqrt{s} = 13$ TeV

New

New

 $\alpha_{S}(M_{Z}) = 0.1199 \pm 0.0015 \,(\text{exp}) \pm 0.0002 \,(\text{mod}) \,{}^{+0.0002}_{-0.0004} \,(\text{par}) \,{}^{+0.0031}_{-0.0019} \,(\text{scale})$

(just out) **CMS-PAS-SMP-16-014**

 $\chi^2 / n_{dof} = 1.18$

CMS SMP-16-011 **CMS+HERA:**

9

Extraction of the Strong Coupling Constant

 $a_{s}(M_{z}) = 0.1150 \pm 0.0010 \text{ (exp)} \pm 0.0013 \text{ (PDF)} \pm 0.0015 \text{ (NP)} + 0.0050 - 0.0000 \text{ (scale)}$ $= 0.1150 \pm 0.0023$ (all except scale) $+0.0050_{-0.0000}$ (scale)

CMS SMP-16-008

Inclusive isolated – photon cross section

E_T(y) > 150 GeV

The NLO pQCD predictions(Jetphox) provide an adequate description of the data

New

arXiv:1701.06882v1

Di-photon production cross section

12

J/ψ production in jets

Fraction of jet transverse momentum carried by J/ ψ meson: $z(J/\psi)$

2.5 < η(jet) < 4.0

See: LHCb parallel talk by Philip Ilten ¹³

7 TeV, 4.6 fb⁻¹ Precision measurement of W and Z cross sections

Measurement of differential and integrated cross sections

- 100x statistics
- Luminosity determination $3.4\% \rightarrow 1.8\%$

Since 2010:

Better understanding of triggers and lepton reconstruction

Main systematics:

- Signal modeling
- Multijet background

Fiducial W and Z Cross Sections

Fiducial cross sections

No theoretical uncertainty from extrapolation outside experimental acceptance

Phys. Rev. D85 (2012) 072004

FEWZ = DYNNLO ~ 1\%

Some differentiation between PDF sets observed **Experimental uncertainties smaller than individual PDF uncertainties**

OFiducial: W versus Z

arXiv:1612.03016

DYNNLO 1.5

Luminosity 3.4% ==> 1.8%

Ratios of fiducial cross sections

W+/W- in good agreement

arXiv:1612.03016

W/Z lower than predictions

Theoretical calculation uncertainties only from PDF

Explore the flavor structure of the proton via electroweak interactions

Differential cross section measurements

Measured with a precision of 0.4-0.6 (exp) ± 1.8 (lumi)% **Higher precision than NNLO predictions**

PDF profili

Strangeness in the Proton

$$R_s = \frac{s+\bar{s}}{\bar{u}+\bar{d}} = 1.13 \pm 0.0$$

arXiv:1612.03016

 $05 (exp) \pm 0.02 (mod) {}^{+0.01}_{-0.06} (par)$

19

W mass measurement

arXiv:1701.07240

W mass measurement results

$M_{W} = 80370 \pm 19 \text{ MeV}$

ATLAS measurement precision close to current best measurement Consistent with other results and SM electroweak fit

arXiv:1701.07240

Measurements of Z + jets

 N_{jets}

22

Measurements of Z + jets

arXiv:1611.03844v1

Explore extreme phase space (using 13 TeV dataset)

W+jets production

CMS PAS SMP-16-005

H

W + ≥ 2 jets

Z+b-quark production

$\frac{d\sigma(Z+(\geq 1b))/dx}{d\sigma(Z+jets)/dx}$

25

Forward W+bb, W+cc and top-quark production

Simultaneous 4D fit to µ+, µ-, e+, e- samples

Fit projection in the µ⁺ sample

Phys. Lett. B767 (2017) 110

Variables

m_{jj}: Dijet mass

uGB: MVA to separate Wbb from top

BDT (blc) for both jets to separate b from c

Fit:

- Wbb, Wcc and tt floating
- **Background fixed to theory**

Forward W+bb, W+cc and top-quark production

Cross sections and theoretical predictions in the LHCb fiducial region

Good agreement with NLO theoretical prediction: MCFM with CT10 + Phytia 8 See: LHCb parallel talk by Marcin Kucharczyk

Phys. Lett. B767 (2017) 110

Top quark pair production

Top pair production Consistent across all channels (Experimental uncertainty: ~ 2.5-15%)

NNLO + NNLL QCD prediction

Start constraining gluon PDFs!

Top quark mass measurements

Measured in different channels with different techniques

ATLAS+CMS Preli
World Cor
stat
total unce
$m_{top} = 170$
ATLAS, I+jets (*)
ATLAS, dilepton (*)
CMS, I+jets
CMS, dilepton
CMS, all jets
LHC comb. (Sep 20
World comb. (Mar 2
ATLAS, I+jets
ATLAS, dilepton
ATLAS, all jets
ATLAS, single top
ATLAS, dilepton
ATLAS, all jets
ATLAS comb. (^{Jun}
CMS, I+jets
CMS, dilepton
CMS, all jets
CMS, single top
CMS comb. (Sep 20
(*) Superseded by results
shown below the line
165

LHC top WG S Preliminary

Vorld Comb. Mar 2014, [7] tat otal uncertainty $n_{top} = 173.34 \pm 0.76 \ (0.36 \pm 0.67) \ GeV$ (*) on (*) (Sep 2013) (Mar 2014) on top on (June 2016) I+jets, dil.). (Sep 2015) ┠─┼┯┼─ [1] ATLAS-CONF-2013-046

 m_{top} summary, $\sqrt{s} = 7-8 \text{ TeV}$

total stat		
m _{top} ± total (stat ± syst)	s	Ref
172.31± 1.55 (0.75 ± 1.35)	7 TeV	[1]
173.09 ± 1.63 (0.64 ± 1.50)	7 TeV	[2]
173.49 ± 1.06 (0.43 ± 0.97)	7 TeV	[3]
172.50 ± 1.52 (0.43 ± 1.46)	7 TeV	[4]
173.49 ± 1.41 (0.69 ± 1.23)	7 TeV	[5]

172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]
$173.49 \pm 1.41 \ (0.69 \pm 1.23)$	7 TeV [5]
173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]
173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV
172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]
173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]
175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]
$172.2 \pm 2.1 \ (0.7 \pm 2.0)$	8 TeV [10]
$172.99 \pm 0.85 (0.41 \pm 0.74)$	8 TeV [11]
173.80 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
172.84 \pm 0.70 (0.34 \pm 0.61)	7+8 TeV [
172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]
$172.82 \pm 1.23 (0.19 \pm 1.22)$	8 TeV [13

- $172.32 \pm 0.64 \ (0.25 \pm 0.59)$
- $172.60 \pm 1.22 (0.77 \pm 0.95)$
- $172.44 \pm 0.48 (0.13 \pm 0.47)$

[6] ATLAS-CONF-2013-102 [7] arXiv:1403.4427 [8] Eur.Phys.J.C75 (2015) 330 [9] Eur.Phys.J.C75 (2015) 158 [10] ATLAS-CONF-2014-055

[11] arXiv:1606.02179 [12] ATLAS-CONF-2016-064 [13] Phys.Rev.D93 (2016) 072004 [14] CMS-PAS-TOP-15-001

185

170

175 m_{top} [GeV]

[2] ATLAS-CONF-2013-077

[4] Eur.Phys.J.C72 (2012) 2202

[5] Eur.Phys.J.C74 (2014) 2758

[3] JHEP 12 (2012) 105

180

Aug 2016

Diboson production at the LHC

Inclusive diboson cross sections summary

ATLAS and CMS have performed extensive studies of diboson production:

ratio to best th

	∫£dt	March 2017		CMS P
	[fb ⁻¹]	CMS measurements	7 TeV CMS me	easurement (stat stat+svs) ⊢
-	4.9	vs. NNLO (NLO) theory	8 TeV CMS me	asurement (stat stat+sys) ⊢
a T N	4.6		13 TeV CMS m	neasurement (stat stat+svs)⊢
3 leV	20.3	$\mathbf{v}\mathbf{v}$		$1.06 \pm 0.01 \pm 0.12$
	4.6	W_{γ} (NILO th)		$1.00 \pm 0.01 \pm 0.12$ 1.16 ± 0.03 ± 0.13
	20.3	$\overline{\mathbf{Z}}_{\mathcal{N}}$ (NLO th)		$0.98 \pm 0.01 \pm 0.05$
	20.3	Z_{γ} , (NLO th.)		$0.30 \pm 0.01 \pm 0.05$ 0.98 + 0.01 + 0.05
	4.6	$\lambda/\lambda/\lambda/\lambda/\lambda/Z$		$0.30 \pm 0.01 \pm 0.03$ 1 01 + 0 13 + 0 1/
	4.6			$1.01 \pm 0.13 \pm 0.14$ $1.07 \pm 0.04 \pm 0.09$
	3.2			$1.07 \pm 0.04 \pm 0.09$
	20.3			$1.00 \pm 0.02 \pm 0.00$
	4.0			$0.90 \pm 0.03 \pm 0.06$
	20.3			$1.05 \pm 0.07 \pm 0.06$
	4.6			$1.02 \pm 0.04 \pm 0.07$
	4.6		13 lev	$0.80 \pm 0.06 \pm 0.07$
	20.3			$0.97 \pm 0.13 \pm 0.07$
	3.2 20.3			$0.97 \pm 0.06 \pm 0.08$
7 TeV	4.6	ZZ New		$1.10 \pm 0.04 \pm 0.05$
a	3.2	0.5		1.5
the wet	20.3	http://cern.ch/go/pNj7	Production Cros	ss Section Ratio: σ
⊕ syst	3.2			
8 lev	20.3	7, 8 , ⁻	13 TeV: WW, WZ	and ZZ
a _	3.2	7	8 ToV- 7v	
⊕ syst	20.3	· ,		
13 TeV	4.6		7 ΙeV: Wγ	
a	20.3			
A evet	4.6			
J 5951	20.3	Good agree	ment with	
	4.0	theory	aulotiono	arxiv.1504.01330
2.2 2.4				arXiv: 1604.0857
neory	,	(NNLO or NLO C	ACD, LO QED)	

ZZ production cross section

Diboson differential cross sections

Softer p_T^{zz} then predicted by NLO QCD

No deviations observed in the differential kinematic distributions for Wy, Zy, WW, WZ or ZZ

CMS-PAS-SMP-16-017

Study different production mechanisms

Electroweak production: Vector Boson(s) + 2 jets

VBS

- - large rapidity separation
 - low hadronic activity in-between

EWK measurements: V(V)+2jets		ATLAS (8 TeV)	CMS (8 TeV)
Diboop	W±(lv)W±(lv)	PRL 113, 141803, arxiv:1611.02428 Evidence: EWK signal significance 3.6σ (exp	PRL 114 (2015) 051801 EWK signal significance 1.9σ (exp 2.9
(statistics	W(Iν)γ		CMS-PAS-SMP-14-011 EWK signal significance 2.7σ (exp 1.5
dominated)	Z(II)γ	STDM-2015-21 EWK signal significance 2.0σ (exp 1.8σ) E	CMS-PAS-SMP-14-018 vidence: EWK signal significance 3.0σ (ex
Single boson	Z(II)	JHEP 04 (2014) 031 Observation: EWK signal significance ~5o	EPJC 75 (2015) 66 Observation: EWK signal significance
(systematic dominated)	W(Iv)	arXiv:1703.04362 Observation: EWK signal significance >50	JHEP 11 (2016) 147 Evidence: EWK signal significance ~4

V(V) + 2 jets production is dominated by $O(\alpha_s^2)$ QCD processes evaluated from data in control region or from simultaneous fit

EWK V(V) + 2 jets production is essential to probe the nature of the EWSB characteristic signature: two high- p_T jets in the forward-backward region with:

First observation of EWK V+2 jets with 8-TeV data First evidence for EWK VV+2 jets with 8 TeV data

Zy electroweak production in association with a high-mass dijet system

Electroweak processes

QCD processes

width 150

Data / |

Vector Boson Scattering

$Z \rightarrow I^+I^-$ and $Z \rightarrow v v$

Cross section extracted from likelihood fit on centrality of Zy

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-21/

Zy electroweak production in association with a high-mass dijet system

2.0σ (exp 1.8σ)

Measurement is statistics dominated

Similar analysis from CMS Two bins: 400 < m_{ii} < 400 GeV; m_{ii} > 800 GeV

 $|y_{Z\gamma} - (y_{j1} + y_{j2})/2| < 1.2, |\Delta \eta_{jj}| > 1.6$, and $\Delta \phi_{Z\gamma,jj} > 2.0$ radians.

Evidence for EWK Zy jj production Significance: 3.0 σ (exp 2.1 σ)

 $1.86^{+0.90}_{-0.75}$ (stat) $^{+0.34}_{-0.26}$ (syst) \pm 0.05 (lumi) fb

arXiv: 1702.03025v1

Electrowea

 $-q_f$

LHC electroweak Xjj production measurements

ATLAS

ATLAS EW Wjj √s=7 TeV This paper (CERN-EP-2017-008)

ATLAS EW Wjj Vs=8 TeV This paper (CERN-EP-2017-008)

CMS EW Wjj √s=8 TeV JHEP 1611 (2016) 147

ATLAS EW Zjj √s=8 TeV JHEP 1404 (2014) 031

CMS EW Zjj √s=8 TeV Eur.Phys.J. C75 (2015) 66

LHC EW Higgs √s=8 TeV JHEP 1608 (2016) 045

1.6 1.8 $\sigma_{\text{EW }W(\to \ell \nu)jj}^{\text{fid}} (7 \text{ TeV}) = 144 \pm 23 \text{ (stat) } \pm 23 \text{ (exp) } \pm 13 \text{ (th) fb}$

 $\sigma_{\rm EW \ W(\to \ell \nu) jj}^{\rm fid} (8 \text{ TeV})$ = 159 ± 10 (stat) ± 17 (exp) ± 20 (th) fb

Dominant uncertainty is systematic: jet energy scale and resolution, PDF

Anomalous Couplings \rightarrow search for physics beyond Standard Model

anomalous Triple Gauge Couplings (aTGC)

Parametrization: extend SM Lagrangian (effective Lagrangian or effective field theory) with additional operators and anomalous parameters:

$$\mathcal{L} = \mathcal{L}^{C}$$

anomalous Quartic Gauge Couplings (aQGC)

New Physics signal at energy beyond direct experimental reach

> **Probing strongly** coupled physics beyond the SM

 $C^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{i} \frac{J_j}{\Lambda^4} O_j$

39

Anomalous Gauge Couplings

Anomalous Quartic Gauge Couplings (aQGC)

anomalous charged couplings

anomalous neutral couplings

No deviations from SM have been observed

Increase of cross section at high energies Typical probes:

- invariant mass of the diboson system
- boson p_T

Results are typically limited by:

- observed statistics in the tail (primary),
- systematic and statistical uncertainty on the signal/bkg model

Anomalous Gauge Couplings

Charged couplings:

- LHC limits slightly better than LEP limits

Neutral couplings:

- LHC limits far stricter than LEP limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

- Anomalous coupling sensitivity depends on the diboson channel
- Sensitivity set by the reach of the diboson invariant mass
- Best sensitivity from channels with large BR (semileptonic decays in boosted topology)

Large gain in sensitivity with increase of \sqrt{s}

arch 201	7 CMS ATLAS	Channel	Limite	[/dt	
•7	ATLAS+CMS	77 (4) 21230	[-1.5e-02, 1.5e-02]	1 G fb ⁻¹	7 TeV
ť₄		77(4120)	[-1.5e-02, 1.5e-02] [-3.8e-03, 3.8e-03]	4.6 ID	9 ToV
Ŧ		ZZ (41,212V) ZZ (41)	[-5.0e-03, 5.0e-03]	20.3 fb ⁻¹	e TeV
		ZZ (41) ZZ (010-1)	[-3.0e-03, 5.0e-03]	19.010	
		ZZ (2 2V)	[-3.0e-03, 3.2e-03]	24.7 10	
		ZZ (41,212V)	[-3.06-03, 2.06-03]	24.7 fb *	7,6 TeV
		ZZ (41) ZZ (41 010-0	[-1.3e-03, 1.3e-03]	35.9 fb	13 lev
_		ZZ (41,212V)	[-1.0e-02, 1.0e-02]	9.6 fb	7 lev
fź		ZZ (41,212v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	/ IeV
-4		ZZ (41,212v)	[-3.3e-03, 3.2e-03]	20.3 fb"	8 lev
		ZZ (41)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
		ZZ (2 2v)	[-2.7e-03, 3.2e-03]	24.7 fb"	7,8 lev
		ZZ (41,212v)	[-2.1e-03, 2.6e-03]	24.7 fb"	7,8 lev
		ZZ (4I)	[-1.2e-03, 1.1e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-8.7e-03, 9.1e-03]	9.6 fb ⁻¹	7 TeV
f ⁷	 	ZZ (4I,2I2v)	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
'5		ZZ (4∣,2l2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	F	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	►	ZZ(2l2√)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ(4I,2I2v)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-1.1e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV
۴Z	I	ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
5	F	ZZ (4I,2I2v)	[-3.3e-03, 3.3e-03]	20.3 fb ⁻¹	8 TeV
	⊢−−−−− −	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
		ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (41,212v)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (41)	[-1.0e-03, 1.2e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (41,212v)	[-9.1e-03, 8.9e-03]	9.6 fb ⁻¹	7 TeV
	0.02 0	0.02	0.04		0.06
	Limits assume no form factor /	x = intinty		mits @9	5% U.L.

41

Closing remarks

results at 7, 8 and 13 TeV

Ratification of the Standard Model of Particle Physics => Discovery of the Higgs Boson smaller and smaller cross sections

The LHC is getting ready to restart

Standard Model measurements and direct searches will play complementary roles in the search for new physics

The LHC proton-proton runs have produced exceptional Standard Model

=> Many precision measurements of ever increasing complexity and exploring

=> Potential for significant discoveries and deeper precision measurements

Inclusive Jet Cross Sections

Di-photon production cross section

Name and type of computation

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-15/

Precision measurement of W and Z cross sections 7 TeV dataset - 4.6 fb⁻¹

Missing energy modeling

 E_{T}^{miss} [GeV]

arXiv:1612.03016

Muon η

Fiducial W+ and W- Cross Sections

Fiducial cross sections

No theoretical uncertainty from extrapolation outside experimental acceptance

Phys. Rev. D85 (2012) 072004

 $\overline{\mathbf{FEWZ}} = \overline{\mathbf{DYNNLO}} \sim 1\%$

OFiducial: W⁺ versus W⁻

arXiv:1612.03016

DYNNLO 1.5

Luminosity 3.4% ==> 1.8%

Some differentiation between PDF sets observed **Experimental uncertainties smaller than individual PDF uncertainties**

Systematic uncertainties

Electrone	$\delta\sigma_{W^+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$	$\delta\sigma_{\mathrm{forward}Z}$
Elections		[%]	[%]	[%]
Trigger efficiency	0.03	0.03	0.05	0.05
Reconstruction efficiency	0.12	0.12	0.20	0.13
Identification efficiency	0.09	0.09	0.16	0.12
Forward identification efficiency	_	_	—	1.51
Isolation efficiency	0.03	0.03	—	0.04
Charge misidentification	0.04	0.06	_	—
Electron $p_{\rm T}$ resolution	0.02	0.03	0.01	0.01
Electron $p_{\rm T}$ scale	0.22	0.18	0.08	0.12
Forward electron $p_{\rm T}$ scale + resolution	_	_	_	0.18
$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	_	—
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	_	_
Jet energy scale	0.04	0.02	_	_
Jet energy resolution	0.11	0.15	—	—
Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12
Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25
PDF	0.10	0.12	0.09	0.06
Boson $p_{\rm T}$	0.22	0.19	0.01	0.04
Multijet background	0.55	0.72	0.03	0.05
Electroweak+top background	0.17	0.19	0.02	0.14
Background statistical uncertainty	0.02	0.03	< 0.01	0.04
Unfolding statistical uncertainty	0.03	0.04	0.04	0.13
Data statistical uncertainty	0.04	0.05	0.10	0.18
Total experimental uncertainty	0.94	1.08	0.35	2.29
Luminosity			1.8	

arXiv:1612.03016

Muons		$\delta\sigma_{W-}$	
	[%]	[%]	
Trigger efficiency	0.08	0.07	
Reconstruction efficiency **	0.19	0.17	
Isolation efficiency	0.10	0.09	
Muon $p_{\rm T}$ resolution	0.01	0.01	<
Muon $p_{\rm T}$ scale	0.18	0.17	
$E_{\rm T}^{\rm miss}$ soft term scale	0.19	0.19	
$E_{\rm T}^{\rm miss}$ soft term resolution	0.10	0.09	
Jet energy scale	0.09	0.12	
Jet energy resolution	0.11	0.16	
Signal modelling (matrix-element generator)	0.12	0.06	
Signal modelling (parton shower and hadronization	tion) 0.14	0.17	
PDF	0.09	0.12	
Boson <i>p</i> _T	0.18	0.14	
Multijet background	0.33	0.27	
Electroweak+top background	0.19	0.24	
Background statistical uncertainty	0.03	0.04	
Unfolding statistical uncertainty	0.03	0.03	
Data statistical uncertainty	0.04	0.04	
Total experimental uncertainty	0.61	0.59	
Luminosity		1.8	

47

Electron-Muon Universality

 $BR(Z \rightarrow ee)$ $BR(Z \to \mu\mu)$

0.50%

 1.0026 ± 0.0013 (stat) ± 0.0048 (syst)

fid

 $\sigma_{Z \to ee}^{\text{fid}}$

 1.0026 ± 0.0050 .

 E_{z}^{e}

 $\sigma_{Z \to \mu\mu}^{\text{fid},\mu} / E_Z^{\mu} \quad \sigma_{Z \to \mu\mu}^{\text{fid}}$

_fid,e

_fid,µ

arXiv:1612.03016

PDF profiling results from W/Z precision measurement

Impact of measurement when applied to existing PDF (MMHT14,CT14)

The strange-quark distribution is significantly increased and the uncertainties are reduced

Strangeness in the Proton

$$r_s = \frac{s + \bar{s}}{2\bar{d}} = 1.19 \pm 0.07 \,(\text{exp}) \pm 0.02 \,(\text{mod}) \,_{-0.10}^{+0.02} \,(\text{par})$$

arXiv:1612.03016

 $R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}} = 1.13 \pm 0.05 \,(\text{exp}) \pm 0.02 \,(\text{mod}) \stackrel{+0.01}{_{-0.06}} \,(\text{par})$

Anomalous Triple Gauge Couplings

March 2017	Central		<u>.</u>		f	_
	Fit value		Channel		J Ldt	VS Z Tal
$\Delta \kappa_{Z}$			VVVV	[-4.3e-02, 4.3e-02]	4.6 1b	7 TeV
			VV VV	[-2.5e-02, 2.0e-02]	20.3 fb	8 19V 0 TeV
			VV VV		19.4 fb 1	
				[-1.3e-01, 2.4e-01]	33.6 fD	0,13 10V
		L		[-2.1e-01, 2.5e-01]	19.6 10	7 ToV
			VV V		4.0 1D	7 TeV
			VV V	[-2.3 - 02, 3.3 - 02]	5.0 10 10.6 fb ⁻¹	9 ToV
				[-2.3e-02, 3.2e-02]	19.6 fD	
			VVV	$[-7.4e_{-}02, 5.1e_{-}02]$	2.3 ID	0.20 TeV
				[-7.4e-02, 5.1e-02]	0.7 ID 4 G fb ⁻¹	7 TeV
'-z				[-1.9e-02, 1.9e-02]	4.0 ID 00.2 fb ⁻¹	8 TeV
				[-4.8e-02, 4.8e-02]	20.3 ID	7 ToV
			N000	[-2.4e-02, 2.4e-02]	4.9 ID 19.4 fb ⁻¹	8 TeV
		1 - 1	W/7	[-4.6e-02, 4.7e-02]	19.4 10 1.6 fb ⁻¹	7 TeV
		் ப ்	WZ	[-1 4e-02, 1 3e-02]	33.6 fb ⁻¹	8.13 TeV
		i i i i i i i i i i i i i i i i i i i	WZ	[-1.8e-02, 1.6e-02]	19.6 fb ⁻¹	8 TeV
			WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
		i i i i i i i i i i i i i i i i i i i	ŴV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
		́н'	ŴV	[-1.1e-02, 1.1e-02]	19.6 fb ⁻¹	8 TeV
			WV	[-3.9e-02, 3.9e-02]	2.3 fb ⁻¹	13 TeV
		i ●i	D0 Comb.	-3.6e-02, 4.4e-02	8.6 fb ⁻¹	1.96 TeV
		⊢ • · ·	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
AgZ			ŴŴ	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV
29 ₁		i 🛏 i	ŴŴ	[-1.6e-02, 2.7e-02]	20.3 fb ⁻¹	8 TeV
		I	ŴŴ	[-9.5e-02, 9.5e-02]	4.9 fb	7 TeV
		⊢●	ŴŴ	[-4.7e-02, 2.2e-02]	19.4 fb ⁻¹	8 TeV
		H	WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV
		H-1	WZ	[-1.5e-02, 3.0e-02]	33.6 fb ⁻¹	8,1 3 T eV
		⊢ –−	WZ	[-1.8e-02, 3.5e-02]	19.6 fb ⁻¹	8 TeV
		⊢−−−−−1	WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV
		H	WV	[-8.7e-03, 2.4e-02]	19.6 fb ⁻¹	8 TeV
		⊢−−−−−	WV	[-6.7e-02, 6.6e-02]	2.3 fb ⁻¹	13 TeV
		⊢_●	D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb ⁻¹	1.96 TeV
		_ ⊢●┼┛ ╷ ╷	LEP Comb.	[-5.4e-02, 2.1e-02]	0,7 fb ⁻¹	0.20 TeV
		0		0.5		1
		-		aTGCL	imite @Q4	5% C I
						, o O.L.

Limits assume no form factor Λ = infinity

New: CMS ZZ with Z \rightarrow I+I using 35.9 fb⁻¹ of 13 TeV pp collisions, CMS PAS SMP-16-017

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Z+jets: Dijet invariant mass

Z+jets: azimuthal angle measurement

arXiv:1611.03844v1

W+jets production

W+jets production: W + \geq 2 jets

arXiv:1610.04222v1

LHC electroweak production of a single W, Z, or Higgs boson

J/w production in jets

See: LHCb parallel talk by Philip Ilten 58

Search for triboson W±W±W

arXiv:1610.05088v2

Diboson differential cross sections

Softer p_T^{zz} then predicted by NLO QCD

Anomalous Gauge Couplings

anomalous charged couplings

anomalous neutral couplings

No deviations from SM have been observed

Charged couplings:

- LHC limits slightly better than LEP limits

Neutral couplings:

- LHC limits far stricter than LEP limits

New: CMS ZZ with $Z \rightarrow I^+I^-$ using 35.9 fb⁻¹ of 13 TeV pp collisions, CMS PAS SMP-16-017

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC 61

