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FIG. 1: The u-valence, d-valence, gluon and sea quark (x⌃ = 2x(ū + c̄ + d̄ + s̄)) PDFs with their 1 �
uncertainty bands of ABM12 [2], HERAPDF2.0 [4] and JR14 (set JR14NNLO08VF) [5] at NNLO at the
scale Q2 = 4 GeV2; absolute results (left) and ratio with respect to ABM12 (right).
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FIG. 2: Same as Fig. 1 for the CT14 [3], MMHT14 [6] and NNPDF3.0 [7] PDF sets with their 1 �
uncertainty bands at NNLO; absolute results (left) and ratio with respect to CT14 (right).
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FIG. 1: The u-valence, d-valence, gluon and sea quark (x⌃ = 2x(ū + c̄ + d̄ + s̄)) PDFs with their 1 �
uncertainty bands of ABM12 [2], HERAPDF2.0 [4] and JR14 (set JR14NNLO08VF) [5] at NNLO at the
scale Q2 = 4 GeV2; absolute results (left) and ratio with respect to ABM12 (right).
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Accardi et al., arXiv:1603.08906 
see talk by M. Ubiali

http://arxiv.org/abs/arXiv:1603.08906
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Transverse momentum
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Transverse-Momentum Distributions

3 dimensional
f(x,~k?)
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EPJ A (2016) 52 

http://link.springer.com/journal/10050/topicalCollection/AC_628286e999d9a60c9a780398df15f93d
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Why do we map partonic distributions?

• Curiosity 

• Measure things that we cannot calculate with QCD

• Test things we can calculate with QCD (perturbative and lattice)

• Use to make predictions in hadronic collisions and look for new interesting 
physics

8
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see, e.g., Ji, Ma, Yuan, PRD 71 (05) 
Collins, “Foundations of Perturbative QCD” (11)  
Rogers, Aybat, PRD 83 (11) 
Echevarria, Idilbi, Scimemi JHEP 1207 (12)

TMD factorization well understood
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TMD universality is not trivial
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TMD factorization breaking in pp to hadrons

see talks by M. Skoby (Wednesday, WG6)see, e.g., Rogers, Mulders, PRD81 (10)
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Rogers, Aybat, PRD 83 (11) 
Collins, “Foundations of Perturbative QCD” (11) 
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Collins, Soper, Sterman, NPB250 (85) 
Laenen, Sterman, Vogelsang, PRL 84 (00) 
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)
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Electron-positron annihilation data are still missing (only some azimuthal 
asymmetries are available)
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Next-to-Leading Log  
Number of data points: 8059 
Global χ2/dof = 1.52 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Pavia2016: first fit putting together  
semi-inclusive DIS, Drell-Yan and Z production
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It’s the dawn of TMD global fits era
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On top of extending data set, many improvements are needed: higher 
perturbative orders, matching with high transverse momentum, flavor 
dependence, flexible functional forms…
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“In children shoes”

A long path  
lies ahead of us 

We can follow the  
footprints of older brothers (PDFs)
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FIG. 17. (color online). 2D binning cross section for π+ channel. The red circles are from the data. The black solid lines are
from the model including the structure functions FUU , F

cos φh

UU and F cos 2φh

UU with parameters ⟨k2
⊥⟩ and ⟨p2⊥⟩ from stand-alone

data fitting. The blue dashed lines are from the model including only the structure functions FUU with parameters ⟨k2
⊥⟩ and

⟨p2⊥⟩ from fitting the data of this work only. The error bars represent the statistical uncertainties of the data. The error band
on the bottom of each panel represents the experimental systematic uncertainty.
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the same as the figure above for π+ channel.

Yan et al., arXiv:1610.02350

Related to unpolarized TMDs

http://arxiv.org/abs/arXiv:1610.02350


New data from JLab

23

15

0.35 0.4 0.45 0.5

]
-2

 [n
b 

G
eV

σd

10

20

30

 < 0.18bj x≤0.14 

0.35 0.4 0.45

5

10

15

20

25

 < 0.20bj x≤0.18 

0.3 0.35 0.4 0.45

5

10

15

20

 < 0.22bj x≤0.20 

0.3 0.35 0.4 0.45

5

10

15

 < 0.24bj x≤0.22 

0.25 0.3 0.35 0.4 0.45

5

10

15

 < 0.25bj x≤0.24 

Data

 (total)σ

 (no mod)σ

0.25 0.3 0.35 0.4

5

10

 < 0.27bj x≤0.25 

0.2 0.25 0.3 0.35 0.4

5

10

 < 0.30bj x≤0.27 

0.2 0.25 0.3 0.35

5

10

 < 0.32bj x≤0.30 

0.2 0.3

2

4

6

 < 0.35bj x≤0.32 

 (GeV)tP
0.1 0.2 0.3

2

4

6

 < 0.45bj x≤0.35 

FIG. 17. (color online). 2D binning cross section for π+ channel. The red circles are from the data. The black solid lines are
from the model including the structure functions FUU , F

cos φh

UU and F cos 2φh

UU with parameters ⟨k2
⊥⟩ and ⟨p2⊥⟩ from stand-alone

data fitting. The blue dashed lines are from the model including only the structure functions FUU with parameters ⟨k2
⊥⟩ and

⟨p2⊥⟩ from fitting the data of this work only. The error bars represent the statistical uncertainties of the data. The error band
on the bottom of each panel represents the experimental systematic uncertainty.

0.35 0.4 0.45 0.5

]
-2

 [n
b 

G
eV

σd

5

10

15

20

 < 0.18bj x≤0.14 

0.35 0.4 0.45

5

10

15

 < 0.20bj x≤0.18 

0.3 0.35 0.4 0.45

5

10

 < 0.22bj x≤0.20 

0.3 0.35 0.4 0.45

5

10

 < 0.24bj x≤0.22 

0.25 0.3 0.35 0.4 0.45

2

4

6

8

10

 < 0.25bj x≤0.24 

Data

 (total)σ

 (no mod)σ

0.25 0.3 0.35 0.4

2

4

6

8

 < 0.27bj x≤0.25 

0.2 0.25 0.3 0.35 0.4

2

4

6

 < 0.30bj x≤0.27 

0.2 0.25 0.3 0.35

2

4

 < 0.32bj x≤0.30 

0.2 0.3

1

2

3

4

 < 0.35bj x≤0.32 

 (GeV)tP
0.1 0.2 0.3

1

2

3

 < 0.45bj x≤0.35 

FIG. 18. (color online). 2D binning cross section for π− channel. The definitions of the markers, the lines and the bands are
the same as the figure above for π+ channel.

Yan et al., arXiv:1610.02350

Related to unpolarized TMDs

see talks by A. Puckett, K. Allada (Tuesday) 

http://arxiv.org/abs/arXiv:1610.02350


New data from COMPASS

24

8 The COMPASS Collaboration

0

0.05

h0
a

−
h

+
h

0

0.05

−0.02

0

0.02φ
si

n
h
a

−0.02

0

0.02

−0.02

0

0.02φ
si

n
2

h
a

−0.02

0

0.02

−0.02

0

0.02φ
si

n
3

h
a

−0.02

0

0.02

−210 −110

−0.02

0

0.02

x

φ
co

s
h
a

0.2 0.4 0.6

−0.02

0

0.02

z 0.5 1

−0.02

0

0.02

)cGeV/( h

T
p

Fig. 4: The modulation amplitudes of the h+ and h� azimuthal asymmetries as a function of x ,z and ph
T obtained

from the combined 2002–2006 data on the muon SIDIS off longitudinally polarised deuterons. Only statistical
uncertainties are shown.

in Fig. 5, where D0(x,y) is the virtual-photon depolarisation factor multiplied by the average beam po-
larisation |Pµ | as defined in Ref. [5] for each x-bin. If the amplitudes a0

h±(x) represent main contributions
to the asymmetries of Eq. (3), the values of a0

h±(x)/D0(x,y) by definition (see e.g. Ref. [12]) are equal
to the asymmetries Ah±

1d (x). Within experimental uncertainties, there is good agreement between our data
on a0

h±(x)/D0(x,y) and the data of Ref. [13] on Ah±
1d (x), which confirms the correctness of the results on

the asymmetries calculated by the modified acceptance-cancelling method. The values of Ah±
1d (x) were

obtained with the 2002–2004 data. A similar x-dependence was also observed with 2002–2006 data
for the asymmetries Ap±

1d (x) and AK+

1d (x) obtained with identified pions and positive kaons, respectively
Ref. [6].

5 Systematic uncertainties

The compatibility of the results on the asymmetries ah±(f) that were obtained separately for 2002, 2003,
2004 and 2006 years was checked by building the pull distributions: pullsi = (ai�hai) · |s2

ai
�s2

hai|
�1/2,

where ai is the asymmetry for a given year, hadron charge and kinematic bin, hai is the corresponding
weighted mean value over four years and s denotes the corresponding standard deviation. The distri-

COMPASS, arXiv:1609.06062Related to polarized TMDs

http://arxiv.org/abs/arXiv:1609.06062
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in Fig. 5, where D0(x,y) is the virtual-photon depolarisation factor multiplied by the average beam po-
larisation |Pµ | as defined in Ref. [5] for each x-bin. If the amplitudes a0

h±(x) represent main contributions
to the asymmetries of Eq. (3), the values of a0

h±(x)/D0(x,y) by definition (see e.g. Ref. [12]) are equal
to the asymmetries Ah±

1d (x). Within experimental uncertainties, there is good agreement between our data
on a0

h±(x)/D0(x,y) and the data of Ref. [13] on Ah±
1d (x), which confirms the correctness of the results on

the asymmetries calculated by the modified acceptance-cancelling method. The values of Ah±
1d (x) were

obtained with the 2002–2004 data. A similar x-dependence was also observed with 2002–2006 data
for the asymmetries Ap±

1d (x) and AK+

1d (x) obtained with identified pions and positive kaons, respectively
Ref. [6].

5 Systematic uncertainties

The compatibility of the results on the asymmetries ah±(f) that were obtained separately for 2002, 2003,
2004 and 2006 years was checked by building the pull distributions: pullsi = (ai�hai) · |s2
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hai|
�1/2,

where ai is the asymmetry for a given year, hadron charge and kinematic bin, hai is the corresponding
weighted mean value over four years and s denotes the corresponding standard deviation. The distri-

COMPASS, arXiv:1609.06062Related to polarized TMDs

see talk by B. Parsamyan (Wednesday, WG6)

http://arxiv.org/abs/arXiv:1609.06062
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S. Bültmann et al., Phys. Lett. B 647 98 (2007);
G. G. Ohlsen and P. W. Keaton Jr, Nucl. Instr. Meth.
109 41 (1973).

[25] S. M. Aybat, A. Prokudin, and T. C. Rogers, Phys. Rev.
Lett. 108, 242003 (2012);
M. Anselmino, M. Boglione, S. Melis, Phys. Rev. D 86,
014028 (2012);
P. Sun and F. Yuan, Phys. Rev. D 88, 114012 (2013).

[26] G. Altarelli and G. Parisi., Nucl. Phys. B 126, 298
(1977);
Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977);
V. N. Gribov, L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438
(1972).

[27] J. Collins, EPJ Web of Conferences 85, 01002 (2015).

STAR Collab. arXiv:1511.06003

)s/
T

    (= 2pTJet x
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Su
bp

ro
ce

ss
 F

ra
ct

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

jet+X→pp
NLO CTEQ6M
Anti-kT R=0.6

|<1η|

gg qg

qq+qq'

=200 GeVsSolid:    
=500 GeVsDotted: 

 

Z.)Chang,)DNP)2013)

 [GeV/c]
T

Particle-jet p
5 6 7 8 9 10 11 12 13

U
T

) Sq
si

n(
A

-0.05

0

0.05

 > 0Fx
 < 0Fx

 = 500 GeVs jet + X at A + p Bp
| < 1

jet
d, R = 0.6     |TAnti-k

Sivers!Asymmetries!at!500!GeV)

16)Recent)Spin)Results)from)STAR)6)Drachenberg)

No)sign)of)sizable)azimuthal)asymmetry)
in)jet)produc:on)at)√s = 500)GeV)

6  Consistent*with*expectaEon*from*
measurements*at*√s = 200*GeV*

6  Consistent*with*theory*predicEons*
e.g.,*Kanazawa*and*Koike*PLB*720,*161*(2013)*

Asymmetries!shown!as!
func0on!of!par0cle?jet!pT!
Corresponding*parton-jet*
pT*lower*by*0.6-1.4*GeV/c*

)
Horizontal)errors)include)

uncertain:es)from)
sta:s:cs,)calorimeter)
gains,)efficiencies,)track)
momentum,)and)tracking)

efficiency)

J.)Drachenberg,)MENU)2013)

first evidence  
of sign change?

see talk by B. Parsamyan (Wednesday, WG6)

Can COMPASS give a similar evidence?

see talksby J. Drachenberg,  
and M. Boer for PHENIX (Wednesday, WG6)

prediction with TMD  
evolution equations



Limits of applicability of TMD factorization?

26

<z>=0.23
<z>=0.28
<z>=0.33
<z>=0.38
<z>=0.45
<z>=0.55
<z>=0.65
<z>=0.75

10-1

100

0.25 0.50 0.75 1.00

Q

2=1.76 GeV2

x

B

=9.90e-03

0.25 0.50 0.75 1.00

Q

2=7.57 GeV2

x

B

=9.32e-02

COMPASS M h

+

D

P

T

 (GeV) P

T

 (GeV)

Figure 4: A selection of COMPASS data from [23]. The colored points correspond to the hadron moving with rapidity smaller than some maximum value, which
has been chosen to be a quarter-way between the largest estimate of yf and the value of yh for which R = 1. This ensures that for Q2 ⇠ 10 GeV2, R . 0.25.
Within our rough order of magnitude estimate, grey points are likely to receive important contributions from non-current regions. For detailed phenomenological
calculations, it is important to improve the estimates of Eq. (26) by more precise constraints on MiT and MfT, and also to use a range of rapidity cuto↵s.

<z>=0.14
<z>=0.22
<z>=0.28
<z>=0.34
<z>=0.42
<z>=0.53
<z>=0.69
<z>=0.88

10-1

100

101

0.25 0.50 0.75 1.00

Q

2=5.20 GeV2

x

B

=0.25

0.25 0.50 0.75 1.00

Q

2=5.20 GeV2

x

B

=0.25

HERMES

M

π
+

p

 M

K

+

p

 

P

T

 (GeV) P

T

 (GeV)

Figure 5: A selection of HERMES data from [24]. Points are as described in Fig. 4. The larger mass of the kaon results in a larger number of points that are likely
to receive significant contributions from the non-current regions, within our rough order of magnitude estimate. For detailed phenomenological calculations, it is
important to improve the estimates of Eq. (26) by more precise constraints on MiT and MfT, and also to use a range of rapidity cuto↵s.

xbj are representative of available SIDIS measurements. The
bands represent the values spanned by Eq. (26).

In HERA-like kinematics, Q2 = 103 GeV2, |R| is very small
for most of the left side of the panel, so it is valid there to treat
the hadron as collinear to the outgoing quark (current region).
Conversely, for most of the right side of the panel, |R|�1 is very
small, so that the hadron should be considered collinear to the
incoming quark. Note that the pink and purple bands could be
widened significantly without spoiling this picture. We stress
that at large Q the current regime spans a much larger range
than just the purple band. This can be seen in the smallness of
|R| in the lowest right-hand panel in Fig. 3.

For Q2 = 103 GeV2, the central region, yh ⇡ 0, involves
|R| ⇠ |R|�1 ⇠ 1. However, for the values of zh that we have
plotted, this also corresponds to large PhT (PhT � ⇤QCD) where
collinear factorization applies.

Away from such a large Q, there is greater sensitivity to ex-
act parton kinematics. This is clear in the collinearity plots in

Fig. 3, shown for the JLab-like kinematics Q2 = 2.0 GeV2, and
for the COMPASS/HERMES-like kinematics Q2 = 10.0 GeV2.
As already noted with respect to the PhT versus yh plots in
the top row, the distinction between the ki-collinear, and kf -
collinear regions is much less clear at lower Q. Comparing
the plots on the second row with their corresponding plots for
PhT versus yh in the top panel confirms that transverse momenta
must be kept su�ciently low to maintain small |R|.

The conditions on R or yh can be translated into regions of
zh and PhT. For example, Figs. 4 and 5 show a selection of
SIDIS data from COMPASS and HERMES, respectively. In
both cases, the points in color are those for which the hadron
rapidity is smaller than some maximum value, which has been
chosen to be a quarter-way between the largest estimate of yf
and the value of yh for which R = 1. This ensures that for
Q2 ⇠ 10 GeV2, R . 0.25. We stress that, in the lower Q2 kine-
matics, better estimates are needed for M2

(i/f)T in order to evalu-
ate R more precisely. In fact, the above cut may allow for larger
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Non perturbative intrinsic kT effects

Uncertainties in the normalized qT
spectrum of the Higgs boson at the
LHC. NNLL+NLO uncertainty bands
(solid) compared to an estimate of NP
effects with smearing parameter
gNP = 1.67− 5.64GeV 2 (dashed).

The qT spectrum has a strong
sensitivity from collinear PDFs
(especially from the gluon density).

Giancarlo Ferrera – Milan University & INFN REF 2014 – Antwerp – 10/12/2014
Overview on qT resummation 22/24
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ATLAS Collab. arXiv:1701.07240

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: EPJC CERN-EP-2016-305
26th January 2017

Measurement of the W-boson mass in pp collisions
at
p

s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

A measurement of the mass of the W boson is presented based on proton–proton collision
data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the
LHC, and corresponding to 4.6 fb�1 of integrated luminosity. The selected data sample
consists of 7.8 ⇥ 106 candidates in the W ! µ⌫ channel and 5.9 ⇥ 106 candidates in the
W ! e⌫ channel. The W-boson mass is obtained from template fits to the reconstructed
distributions of the charged lepton transverse momentum and of the W boson transverse
mass in the electron and muon decay channels, yielding

mW = 80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV
= 80370 ± 19 MeV,

where the first uncertainty is statistical, the second corresponds to the experimental system-
atic uncertainty, and the third to the physics-modelling systematic uncertainty. A meas-
urement of the mass di↵erence between the W+ and W� bosons yields mW+ � mW� =

�29 ± 28 MeV.

c� 2017 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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�29 ± 28 MeV.

c� 2017 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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that A now also receives a contribution from �
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q ! gq,
leading to somewhat smaller asymmetries.

Since the observables involve final-state heavy quarks
or jets, they require high energy colliders, such as a future
Electron-Ion Collider (EIC) or the Large Hadron electron
Collider (LHeC) proposed at CERN. It is essential that
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Z !
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Z [18–21]. This could be described by the distribu-

tion of linearly polarized photons inside a lepton, pro-
ton, or atom. QCD adds the twist that for gluons inside
a hadron, ISI or FSI can considerably modify the result
depending on the process, for example, in HQ produc-
tion in hadronic collisions: p p ! QQ̄X, which can be
studied at BNL’s Relativistic Heavy Ion Collider (RHIC)
and CERN’s LHC, and p p̄ ! QQ̄X at Fermilab’s Teva-
tron. Since the description involves two TMDs, breaking
of TMD factorization becomes a relevant issue, cf. [14]
and references therein. The cross section for the process
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and C contain convolutions of TMDs. Schematically,
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The factorized description in terms of TMDs is prob-

lematic though. In Ref. [14] it was pointed out that for
hadron or jet pair production in hadron-hadron scatter-
ing TMD factorization fails. The ISI/FSI will not allow
a separation of gauge links into the matrix elements of

the various TMDs. Only in specific simple cases, such
as the single Sivers e↵ect, one can find weighted expres-
sions that do allow a factorized result, but with in gen-
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(x)) will appear, corresponding
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too two di↵erent (f and d type) gluon correlators arise,
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tion are found to be di↵erent. However, in the unpo-
larized scattering case considered in this letter the situ-
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dominates. In the �
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(x)) will appear, corresponding
to gluon operators with the color structures fabe fcde and
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trix element with the f f -structure appears, while in the
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suppressed by 1/N2). A side remark on pT broadening
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Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive
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Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive
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(x)) will appear, corresponding
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dabe dcde, respectively [23, 24]. This is similar to what
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Fig. 7: Sivers two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton (QCDC)
and Leading Process (LP) from the COMPASS high-pT deuteron (left) and proton (right) data. The x
range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate the
systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive
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range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate the
systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive
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Only way to provide direct access to partonic orbital angular momentumLq
z =

R
dxd2~k?d2~b?(~b? ⇥ ~

k?)⇢
q
LU (

~

b?,~k?, x)

Quark Orbital Angular Momentum 

Lorce’, BP, Xiong, Yuan, arXiv:1111.4827 [hep-ph]

Proton spin
u-quark OAM
d-quark OAMResults in a light-cone constituent quark model:

=
R
d2~b?~b? ⇥ h~kq?i h~kq?i =

Z
dxd~k? ~

k?⇢
q
LU (

~

b?,~k?, x)

Lorce’, BP (11)
Hatta (12)
Ji, Xiong, Yuan (12)

based on Pasquini, Lorcé, Xiong, Yuan, PRD 85 (12)

Lq
z =

R
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q
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Quark Orbital Angular Momentum 
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d-quark OAMResults in a light-cone constituent quark model:

=
R
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Z
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q
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•We have some indications about the qualitative behaviour of 
some of TMDs (much better than just five years ago), but we 
are still far from precision

•The global fit era has started, much road to be covered to try 
to reach PDF fits
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