Transverse Momentum-Dependent Parton Distributions

Alessandro Bacchetta

Funded by

MAPPING
THE PROTON IN 3D

European Research Council

TMDs at DIS

TMDs at DIS

- DIS 2000 in Liverpool (my first participation to DIS): about 5 talks, concentrated in Spin Physics WG

TMDs at DIS

- DIS 2000 in Liverpool (my first participation to DIS): about 5 talks, concentrated in Spin Physics WG
- DIS 2017 in Birmingham: about 5^{2} talks, across several WGs

Parton Distribution Functions

$f(x)$
1 dimensional

1D maps of partonic distribution

Accardi et al., arXiv:1603.08906 see talk by M. Ubiali

Transverse-Momentum Distributions

$f\left(x, \vec{k}_{\perp}\right)$
3 dimensional !

3D maps of partonic distribution

3D maps of partonic distribution

The European Physical Journal A
All Volumes \& Issues

Why do we map partonic distributions?

Why do we map partonic distributions?

- Curiosity

Why do we map partonic distributions?

- Curiosity
- Measure things that we cannot calculate with QCD

Why do we map partonic distributions?

- Curiosity
- Measure things that we cannot calculate with QCD
- Test things we can calculate with QCD (perturbative and lattice)

Why do we map partonic distributions?

- Curiosity
- Measure things that we cannot calculate with QCD
- Test things we can calculate with QCD (perturbative and lattice)
- Use to make predictions in hadronic collisions and look for new interesting physics

What did we achieve so far?

10

1. Exploration phase

First measurements
Parton model interpretation
Last decade

1. Exploration phase

First measurements
Parton model interpretation Last decade

2. Consolidation phase

Measurements from several experiments
First global fits, validation of TMD factorisation and evolution Next decade

1. Exploration phase

First measurements
Parton model interpretation Last decade

2. Consolidation phase

Measurements from several experiments
First global fits, validation of TMD factorisation and evolution Next decade

3. Precision phase

Electron Ion Collider Global fits, to a level comparable to standard PDFs

1. Exploration phase

First measurements
Parton model interpretation Last decade

2. Consolidation phase

Measurements from several
experiments
First global fits, validation of TMD factorisation and evolution Next decade

3. Precision phase

Electron Ion Collider Global fits, to a level comparable to standard PDFs

Factorization and universality

Factorization and universality

Factorization and universality

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

Factorization and universality

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

Factorization and universality

rell-Yan
$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

Factorization and universality

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

TMD factorization well understood

see, e.g., Ji, Ma, Yuan, PRD 71 (05)
Collins, "Foundations of Perturbative OCD" (11) Rogers, Aybat, PRD 83 (11)
Echevarria, Idilbi, Scimemi JHEP 1207 (12)

Factorization and universality

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

Factorization and universality

Qirell-Yan

TMD universality is not trivial

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions
see, e.g., Collins, PLB 536 (02)
Collins, Metz, PRL 93 (04)
Buffing, Mukherjee, Mulders, PRD 86 (12)

Factorization and universality

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

Factorization and universality

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

p-p to pions

Factorization and universality

Factorization and universality

TMD evolution

$$
f_{1}^{a}\left(x, k_{\perp} ; \mu^{2}\right)=\frac{1}{2 \pi} \int d^{2} b_{\perp} e^{-i b_{\perp} \cdot k_{\perp}} \widetilde{f}_{1}^{a}\left(x, b_{\perp} ; \mu^{2}\right)
$$

Rogers, Aybat, PRD 83 (11)
Collins, "Foundations of Perturbative OCD" (11)
possible schemes, e.g.,
Collins, Soper, Sterman, NPB250 (85)
Laenen, Sterman, Vogelsang, PRL 84 (00)
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

TMD evolution

$$
f_{1}^{a}\left(x, k_{\perp} ; \mu^{2}\right)=\frac{1}{2 \pi} \int d^{2} b_{\perp} e^{-i b_{\perp} \cdot k_{\perp}} \widetilde{f}_{1}^{a}\left(x, b_{\perp} ; \mu^{2}\right)
$$

$$
\widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Rogers, Aybat, PRD 83 (11)
Collins, "Foundations of Perturbative OCD" (11)
possible schemes, e.g.,
Collins, Soper, Sterman, NPB250 (85)
Laenen, Sterman, Vogelsang, PRL 84 (00)
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

TMD evolution

$$
f_{1}^{a}\left(x, k_{\perp} ; \mu^{2}\right)=\frac{1}{2 \pi} \int d^{2} b_{\perp} e^{-i b_{\perp} \cdot k_{\perp}} \widetilde{f}_{1}^{a}\left(x, b_{\perp} ; \mu^{2}\right)
$$

Collins, "Foundations of Perturbative OCD" (11)
possible schemes, e.g.,
Collins, Soper, Sterman, NPB250 (85)
Laenen, Sterman, Vogelsang, PRL 84 (00)
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

TMD evolution

$$
f_{1}^{a}\left(x, k_{\perp} ; \mu^{2}\right)=\frac{1}{2 \pi} \int d^{2} b_{\perp} e^{-i b_{\perp} \cdot k_{\perp}} \widetilde{f}_{1}^{a}\left(x, b_{\perp} ; \mu^{2}\right)
$$

Collins, "Foundations of Perturbative QCD" (11)
possible schemes, e.g.,
Collins, Soper, Sterman, NPB250 (85)
Laenen, Sterman, Vogelsang, PRL 84 (00)

TMD evolution

Experimental measurements

Experimental measurements

Drell-Yan@ 葠Fermilab

Ito et al., PRD93 (81)
Moreno et al. PRD 43 (91)
Antreyan et al. PRL47 (81)

Experimental measurements

Z production@ $\begin{aligned} & \text { Fermilab }\end{aligned}$

Abbot et al. hep-ex/9909020
Affolder et al. hep-ex/0001021
Abazov et al. arXiv:0712.0803

Drell-Yan@ 葠Fermilab

> Ito et al., PRD93 (81)
> Moreno et al. PRD 43 (91)
> Antreyan et al. PRL47 (81)

Experimental measurements

Z production@ 水Fermilab

Abbot et al. hep-ex/9909020
Affolder et al. hep-ex/0001021
Abazov et al. arXiv:0712.0803

Drell-Yan@ 范Fermilab

Experimental measurements

Z production@ $\begin{aligned} & \text { ق. Fermilab }\end{aligned}$

Experimental measurements

Z production@ Fermilab

Electron-positron annihilation data are still missing (only some azimuthal asymmetries are available)

First global fit of TMDs

SIDIS

First global fit of TMDs

Drell-Yan
 范 Fermilab

First global fit of TMDs

Drell-Yan
 帯 Fermilab

First global fit of TMDs

SIDIS

Drell-Yan
 范 Fermilab

Next-to-Leading Log
Number of data points: 8059
Global X $^{2} /$ dof $=1.52$

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157 see talk by C. Pisano (Tuesday, WG 6)

First global fit of TMDs

Next-to-Leading Log Number of data points: 8059 Global X $^{2} /$ dof $=1.52$

Pavia2016: first fit putiting together semi-inclusive DIS, Drell-Yan and Z production

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157 see talk by C. Pisano (Tuesday, WG 6)

It's the dawn of TMD global fits era

Comparison with collinear PDFs

talk by E. Nocera at POETIC2016

Comparison with collinear PDFs

talk by E. Nocera at POETIC2016

Comparison with collinear PDFs

talk by E. Nocera at POETIC2016
On top of extending data set, many improvements are needed: higher perturbative orders, matching with high transverse momentum, flavor dependence, flexible functional forms...

"In chilitren shooss"

A long path lies ahead of us We can follow the footprints of older brothers (PDFs)

What are (some of) the open challenges?

The TMD table

TMDs in black survive transverse-momentum integration. TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration. TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration. TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration. TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration. TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration.
TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration.
TMDs in red are T-odd

The TMD table

TMDs in black survive transverse-momentum integration.
TMDs in red are T-odd

Status of TMD phenomenology

Status of TMD phenomenology

Data, theory, fits: we start being in a position to validate the formalism

$\begin{aligned} & \dot{0} \\ & \text { i } \\ & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	quark pol.			
		U	L	T
	U	f_{1}		h_{1}^{\perp}
	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Status of TMD phenomenology

Data, theory, fits: we start being in a position to validate the formalism

see, e.g, Bacchetta, Radici, arXiv: 1107.5755
Anselmino, Boglione, Melis, PRD86 (12)
Echevarria, Idilbi, Kang, Vitev, PRD 89 (14)
Anselmino, Boglione, D'Alesio, Murgia, Prokudin, arXiv:
1612.06413

Anselmino et al., PRD87 (13)
Kang et al. arXiv:1505.05589

Status of TMD phenomenology

Data, theory, fits: we start being in a position to validate the formalism

New data from JLab

Related to unpolarized TMDs

New data from JLab

Related to unpolarized TMDs

New data from COMPASS

Related to polarized TMDs

New data from COMPASS

Related to polarized TMDs

New data from COMPASS

Related to polarized TMDs

see talk by B. Parsamyan (Wednesday, WG6)

Nontrivial universality of Sivers TMD

Nontrivial universality of Sivers TMD

Sivers function SIDIS $=-$ Sivers function Drell-Yan
Collins, PLB 536 (02)

Nontrivial universality of Sivers TMD

Sivers function SIDIS $=-$ Sivers function Drell-Yan

Nontrivial universality of Sivers TMD

Sivers function SIDIS $=-$ Sivers function Drell-Yan

Nontrivial universality of Sivers TMD

Sivers function SIDIS $=-$ Sivers function Drell-Yan

Nontrivial universality of Sivers TMD

Sivers function SIDIS $=-$ Sivers function Drell-Yan

Can COMPASS give a similar evidence?

Limits of applicability of TMD factorization?

Boglione et al., arXiv: 1611.10329
Collins et al., arXiv: 1605.00671

Limits of applicability of TMD factorization?

Boglione et al., arXiv: 1611.10329
Collins et al., arXiv: 1605.00671
To avoid current fragmentation, when z is low and Q is low, P_{ht} must be very low...

$$
\text { COMPASS } M_{D}^{h^{+}}
$$

Limits of applicability of TMD factorization?

Boglione et al., arXiv: 1611.10329
Collins et al., arXiv: 1605.00671
To avoid current fragmentation, when z is low and Q is low, P_{h} must be very low...

Imposing a strict cutoff to avoid target fragmentation severely reduces the data set (from 8000 to 500 data points)

TMD Monte Carlo tools

from S. Prestel's talk of this morning

PQCD evol ${ }^{n}$ dominant uncertainty in resummation/TMD region
Goal of Deductor/Dire/Vincia projects: More accurate \& precise showers.

TMD Monte Carlo tools

from S. Prestel's talk of this morning

TMD formalism
PQCD evol ${ }^{n}$ dominant uncertainty in resummation/TMD region
Goal of Deductor/Dire/Vincia projects: More accurate \& precise showers.

TMD Monte Carlo tools

from S. Prestel's talk of this morning

TMD formalism collinear formalism
PQCD evol ${ }^{n}$ dominant uncertainty in resummation/TMD region
Goal of Deductor/Dire/Vincia projects: More accurate \& precise showers.

TMD Monte Carlo tools

Nonperturbative parts of TMDs

TMD formalism collinear formalism
PQCD evol ${ }^{n}$ dominant uncertainty in resummation/TMD region
Goal of Deductor/Dire/Vincia projects: More accurate \& precise showers.

Higgs transverse momentum

Higgs transverse momentum

Impact on high-energy physics

W-boson charge	W^{+}		W^{-}		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\text {T }}$	p_{T}^{2}	$m_{\text {T }}$	p_{T}^{ℓ}	$m_{\text {T }}$
$\delta m_{W}[\mathrm{McV}]$						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
$\Lambda \%$ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower μ_{F} with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower P'DF uncertainty	3.6	1.0	2.6	2.1	1.0	1.6
Angular coeflicients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Impact on high-energy physics

W-boson charge	W^{+}		W^{-}		Combined	
Kinematic distribution	$p_{\text {T }}^{\ell}$	$m_{\text {T }}$	$p_{\text {T }}{ }^{\text {g }}$	$m_{\text {T }}$	p_{T}^{ℓ}	$m_{\text {T }}$
$\delta m_{W}[\mathrm{McV}]$						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
D $\Lambda \%$ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower μ_{F} with heavy-llavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
P'arton shower P'DF uncertainty	3.6	1.0	2.6	2.1	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Pythia tune containing also intrinsic transverse momentum of partons

Gluon TMDs

$e p \rightarrow e$ jet jet X

$$
p p \rightarrow J / \psi \gamma X
$$

$$
p p \rightarrow \eta_{c} X
$$

see, e.g., Boer, den Dunnen, Pisano, Schlegel, Vogelsang, PRL108 (12) den Dunnen, Lansberg, Pisano, Schlegel, PRL 112 (14) see talks by J.-P. Lansberg (Tuesday, WG7, Wednesday, WG5)
T. Van Daal (Thursday, WG6+WG7)

Gluon TMDs

Gluon TMDs

$$
e p \rightarrow e h h X
$$

Gluon TMDs

$$
e p \rightarrow e h h X
$$

Estimate of asymmetry related to gluon Sivers TMD. Based also on Monte Carlo input.

Gluon TMDs

$$
e p \rightarrow e h h X
$$

Estimate of asymmetry related to gluon Sivers TMD. Based also on Monte Carlo input.

Gluon TMDs at low x

Gluon TMDs at low x

Based on CCFM formalism, which should be valid at low x for gluons only (different logarithms are resummed)

Often referred to as "unintegrated PDFs" and " k_{T} factorization"

Gluon TMDs at low x

Based on CCFM formalism, which should be valid at low x for gluons only (different logarithms are resummed)

Often referred to as "unintegrated PDFs" and " k_{T} factorization"

Implies differences also in the integrated observables

Gluon TMDs at low x

Based on CCFM formalism, which should be valid at low x for gluons only (different logarithms are resummed)

Often referred to as "unintegrated PDFs" and " k_{T} factorization"

Implies differences also in the integrated observables
see talks by K. Kutak (Tuesday, WG4),
M. Serino (Wednesday, WG2),
J. Zhou (Wednesday, WG6)
I. Balitsky, E. Petreska, R. Zlebcik, A. Kusina (Thursday, WG2)

Even higher dimensions?

Wigner distributions

$\rho\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$ 5 dimensional! !

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105
PDFs

Parton distribution
functions (x)

TMDs

PDFs
Parton distribution
functions (x) Transverse-momentum
distributions $\left(x, \vec{k}_{\perp}\right)$
TADS Transverse-momentu
distributions $\left(x, \vec{k}_{\perp}\right)$ Transeressemomen.
distributions $\left(x, k_{i}\right.$
TMMS
…入 \vec{k}_{\perp} dependence $\longrightarrow \quad \vec{b}_{\perp}$ dependence

Wigner distributions $\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$

Generalized parton distributions $\left(x, \xi=0, \vec{\Delta}_{T}\right)$

C D D
see next talk by E.-M. Kabuss

PDFs
Parton distribution
…入 \vec{k}_{\perp} dependence
$\longrightarrow \quad \vec{b}_{\perp}$ dependence
functions (x)

Transverse-momentum distributions $\left(x, \vec{k}_{\perp}\right)$

TMDs

PDFs

Parton distribution
functions (x)

…入 \vec{k}_{\perp} dependence

 $\longrightarrow \quad \vec{b}_{\perp}$ dependence

PDFs
Parton distribution
functions (x)
…入 \vec{k}_{\perp} dependence
$\longrightarrow \quad \vec{b}_{\perp}$ dependence

Transverse-momentum.$\therefore \therefore$ Impact-parameter distributions $\left(x, \vec{k}_{\perp}\right)$ TMDs

Wigner distributions $\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$ 2D Fourier transform $\left(\vec{b}_{\perp}\right)$

Generalized TMDs
$\left(x, \xi=0, k_{\perp}, \vec{\Delta}_{T}\right)$

Generalized TMDs and Wigner distributions

Only way to provide direct access to partonic orbital angular momentum

Conclusions

Conclusions

- The formalism works well phenomenologically, but some issues are still to be addressed

Conclusions

- The formalism works well phenomenologically, but some issues are still to be addressed
- A good amount of data is already available, more is coming

Conclusions

- The formalism works well phenomenologically, but some issues are still to be addressed
- A good amount of data is already available, more is coming
-We have some indications about the qualitative behaviour of some of TMDs (much better than just five years ago), but we are still far from precision

Conclusions

- The formalism works well phenomenologically, but some issues are still to be addressed
- A good amount of data is already available, more is coming
- We have some indications about the qualitative behaviour of some of TMDs (much better than just five years ago), but we are still far from precision
-The global fit era has started, much road to be covered to try to reach PDF fits

