

QCD in Heavy-lon Physics

Helen Caines - Yale University

ALICE

Our cosmic history

Many phases and phase transitions in the early universe

So far only QGP-hadron phase transition can be recreated and studied in lab

Exploring the phase diagram of QCD

Lattice Gauge Theory - increasing accuracy at $\mu_B=0$

 $T_c = 154(9) \text{ MeV}$

 $\varepsilon_c = 0.18 \text{-} 0.5 \text{ GeV/fm}^3 = (1.2 \text{-} 3.3) \rho_{\text{nuclear}}$

Exploring the phase diagram

Calculations disfavor C.P. in region $\mu_B/T < 2$ and $T/T_C(\mu_B=0) > 0.9$

Early conditions: Temperature

Initial temperature well above T_c even at √s_{NN} = 39 GeV

Searching for a Critical Point

Critical Points:

divergence of susceptibilities
e.g. magnetism transitions
divergence of correlation lengths
e.g. critical opalescence

Lattice QCD:

Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

Searching for a Critical Point

Critical Points:

divergence of susceptibilities
e.g. magnetism transitions
divergence of correlation lengths
e.g. critical opalescence

Lattice QCD:

Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

Divergences of conserved quantities may survive in the final state

⇒ non-gaussian fluctuations of net-baryon density

Kurtosis x Variance² ~ $\chi^{(4)}/\chi^{(2)}$

M. Stephanov. PRL 107:052301(2011) HADES: QM17

Correlation lengths diverge

→ Net-p κσ² diverge

Peripheral collisions:

smooth trend

M. Stephanov. PRL 107:052301(2011) HADES: QM17

Correlation lengths diverge

→ Net-p κσ² diverge

Peripheral collisions:

smooth trend

Top 5% central collisions:

Non-monotonic behavior

M. Stephanov. PRL 107:052301(2011) HADES: QM17

Correlation lengths diverge

→ Net-p κσ² diverge

Peripheral collisions:

smooth trend

Top 5% central collisions:

Non-monotonic behavior

Hints of Critical fluctuations

M. Stephanov. PRL 107:052301(2011) HADES: QM17

Correlation lengths diverge

→ Net-p κσ² diverge

Peripheral collisions:

smooth trend

Top 5% central collisions:

Non-monotonic behavior

Hadron gas model (UrQMD) no CP:

shows suppression at lower energies

- baryon number conservation

Intermediate summary

A lot happening around 20 GeV - hard to believe its multiple different causes

High statistics exploration of QCD phase diagram and its key features is about to begin

New data from FAIR, NICA, RHIC and SPS just around the corner

Significantly extended detection capabilities compared to existing data

Strong theoretical interest focussed in BEST and HICforFAIR, increased number of focussed workshops

STAR BES-II (2019-2020) Turn trends and features into definitive conclusions

Using "hard" particles as probes

'Hard' processes have a large scale in calculation

→ pQCD applicable:

high momentum transfer Q²

high transverse momentum p_T

high mass m (N.B.: since m>>0 heavy quark production is 'hard'

process even at low p_T)

Early production in parton-parton scatterings with large Q²

A+A

Using "hard" particles as probes

'Hard' processes have a large scale in calculation

→ pQCD applicable:

- high momentum transfer Q²
- high transverse momentum p_T

high mass m (N.B.: since m>>0 heavy quark production is 'hard'

process even at low p_T)

Early production in parton-parton scatterings with large Q²

Direct interaction with partonic phases of the reaction

i.e. a calibrated probe

Look for attenuation/absorption/ modification of probe

Jet quenching at 5 TeV

Jet quenching at 5 TeV

Compensating effects of higher E_{loss}, flatter p_T spectrum,q/g differences

Charm-medium interactions

At both RHIC and LHC:

low p_T : $D^0 v_2$

high p_T : D^0 $R_{AA} \sim light hadron <math>R_{AA}$

Strong charm-medium interactions at LHC and RHIC

Charm-medium interactions

At both RHIC and LHC:

low p_T : $D^0 v_2$ high p_T : $D^0 R_{AA} \sim light hadron <math>R_{AA}$

Strong charm-medium interactions at LHC and RHIC

Joint fit: Diffusion coefficient $D_s \sim 1/(2\pi T) * (2-12)$

Even at RHIC charm thermalized

Melting charmonia

Low p_T : LHC_{2.76} > RHIC decreasing regeneration; less c quarks

High p_T : LHC_{2.76} < RHIC decreasing dissociation; cooler medium

At LHC many J/ψ result of coalesced thermalized charm

Melting bottomonia

At LHC 5 TeV - Highest precision yet

Sequential suppression $R_{AA}(Y(1S)) < R_{AA}(Y(2S))$

Y(3S)) still no observation

Melting bottomonia

At RHIC: First precise results

Sequential suppression $R_{AA}(Y(1S)) < R_{AA}(Y(2S+3S))$

At LHC 5 TeV - Highest precision yet

Sequential suppression $R_{AA}(Y(1S)) < R_{AA}(Y(2S))$

Y(3S)) still no observation

Hints of less suppression at RHIC

Determining initial parton energy

ф1 , рт^{Lead}

Di-jet expectations

Back-to-back in φ

$$\Delta \phi = \phi_1 - \phi_2$$

Equal but opposite momenta

$$A_J = \frac{p_T^{Lead} - p_T^{SubLead}}{p_T^{Lead} + p_T^{SubLead}}$$

$$x_J = \frac{p_T^{Jet}}{p_T^{Trig}}$$

Modification from p-p

- reveal details of interaction with QGP

STAR arXiv:1702.01108 CMS: arXiv:1702.01060 ATLAS: CONF-2016-110

Examine $\Delta \phi$ - azimuthal angle between hadron-jets, z-jet, γ -jet

Leading order expectation: $\Delta \phi \sim \pi$

Little to no azimuthal de-correlation observed

Partons lose energy but are not deflected from original path

Di-jets are imbalanced

 γ (Z) triggers "Absolute" E_{loss} calibration.

Z-jet distribution consistent with γ-jet

Fractional E_{loss} decreases with p_T

p_T> 200 GeV Pb-Pb approaches pp For all centrality inclusive ~ di-b

Inclusive: q and g di-b: q

Probing parton flavor energy loss with ever enhancing precision

Lost energy of a recoil jet

Lost energy of a recoil jet

RHIC: Jet p_T =10-20 GeV

R=0.2: $p_{T,Shift} \sim -4.4 \pm 0.2 \pm 1.2 \text{ GeV}$

R=0.5: $p_{T,Shift} \sim -2.8 \pm 0.5 \pm 1.2 \text{ GeV}$

Lost energy of a recoil jet

RHIC: Jet p_T =10-20 GeV

R=0.2: $p_{T,Shift} \sim -4.4 \pm 0.2 \pm 1.2 \text{ GeV}$

R=0.5: $p_{T,Shift} \sim -2.8 \pm 0.5 \pm 1.2 \text{ GeV}$

LHC: Jet $p_T = 60-100 \text{ GeV}$

R=0.5: $p_{T,Shift} \sim -8 \pm 2GeV$

Energy almost recovered at moderate angles at RHIC but not at LHC

Probing the jet substructure

Jet mass: $M = \sqrt{E^2 - p^2}$

Angular spread of constituents "generates" mass

Pb-Pb: Closer to pp than quenching models

Probing the jet substructure

Jet mass: $M = \sqrt{E^2 - p^2}$

Angular spread of constituents "generates" mass

Pb-Pb: Closer to pp than quenching models

Pb-Pb inclusive jets have "harder cores" than pp jets of same energy

"Groom" jet into two subjets

$$z_{g} = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Significant change at LHC for inclusive jets 140<p_T<200 GeV/c

What has all this taught us?

Different initial conditions and evolutionary paths:

$${\rm \hat{q}(t=0.6fm/c)} \sim {1.2 \pm 0.3 \atop 1.9 \pm 0.7} \; {\rm GeV^2/fm} \, {{T=370}\atop T=470} \; {\rm MeV}$$

Probes behave differently at RHIC and LHC

What has all this taught us?

Different initial conditions and evolutionary paths:

 $\stackrel{\wedge}{q} = Q^2/L$ Q - mtm transfer to medium L - path length

$${\rm \hat{q}(t=0.6fm/c)} \sim {1.2 \pm 0.3 \atop 1.9 \pm 0.7} \; {\rm GeV^2/fm} \, {{T=370}\atop {T=470}} \; {\rm MeV}$$

Probes behave differently at RHIC and LHC

Different virtuality evolutions:

How/when does parton become "aware" of medium

Other significant recent progress

Sophisticated multi-stage modeling

Fluctuating lumpy initial conditions Event-by-event calculations just as for real data

Bayesian multi-parameter fits

Data prefer:

EoS determined by LQCD IP-Glasma initial conditions

Precision estimates of η/s approaching ever closer to lower bound

- also as function of √s_{NN}

p-Pb: Constraining gluon (n)PDFs

Precision measurements of $\eta_{dijet} = (\eta_{1+}\eta_{2})/2 \propto 0.5 \log(x_p/x_{pB}) + \eta_{CM}$

η_{dijet} Theoretically: can be calculated in pQCD

Experimentally: "avoid" fragmentation and hadronization effects

p_Tave Access to Q²

Neither PDFs nor nPDFs gives good fit across whole range

Evidence of gluon modification in EMC region x>0.3

Minbias R_{pPb}

P. Balek (ATLAS), A. Dubla (ALICE), M. Dumancic (ATLAS), T. Okubo (ALICE), B. Schmidt (LHCb), X. Zhu (LHCb)

Nothing enormously unexpected is occurring!

Collectivity in pp and p-Pb

pp:

No dependence on √s No dependence of event activity

p-Pb:

No dependence on √s Some dependence of event activity

Heavy quarks also reveal signal but $v_2^{\mu} < v_2^{h}$

Sufficient (re-)interactions to (partially) thermalize heavy quarks?

High multiplicity events lead to universal observation of long range collective phenomena

Varying the small systems

Changing initial collision geometry changes v_n as expected from models

v₂ real down to 20 GeV

No signs of "rapid" onset in \sqrt{s} or mult.

Our Long Range Plan

Continues as a vibrant field with wide ranging international support

New detectors being designed and built NOW!

New accelerator facilities being designed and built NOW!

sPHENIX, Forward upgrades at STAR, upgrades at LHC, FAIR, NICA, EIC

Spares

The timeline of a heavy-ion collision

Early conditions: Temperature

Direct Photons:

- no charge or color → don't interact with medium
- emitted over all lifetime → convolution of all T

Early conditions: Temperature

Direct Photons:

- no charge or color → don't interact with medium
- emitted over all lifetime → convolution of all T

First order phase transition?

Low \sqrt{s} : slope v_1 (baryons) positive slope v₁ (mesons) negative

Beam energy baryon dv₁/dy trend complex interplay of:

 v_1 baryons transported from beam

 V_1 from pair production

Helen Caines STAR: QM2017

29

First order phase transition?

Low \sqrt{s} : slope v_1 (baryons) positive slope v_1 (mesons) negative

Beam energy baryon dv_1/dy trend complex interplay of:

 v_1 baryons transported from beam

 v_1 from pair production

Net-proton isolates directed flow of transported baryons:

Double sign change in dv₁/dy

Not seen in net-kaons

Results not yet reproduced by theory

Softening of EoS?

Stalling of the expansion?

d final state coalescence access to nucleon freeze-out volume

$$E_{A} \frac{d^{3}N_{A}}{d^{3}p_{A}} \approx B_{A} \left(E_{p} \frac{d^{3}N_{p}}{d^{3}p_{p}} \right)^{A} B_{2} = \frac{6\pi^{3}R_{np}m_{d}}{m_{p}^{2}V_{f}} \stackrel{\circ}{\underset{\circ}{\bigcup}} 10^{-3}$$

B₂ minimum (V maximum) √s_{NN} ~ 20 GeV

(R²_{out} - R²_{side}) sensitive to emission duration

Maximum at √s_{NN} ~ 20 GeV

Softening of EoS?

Sign of entering compressed baryonic matter regime?

Disappearance of QGP?

A lot is happening around 20 GeV

Improving on current data

Current low energy data: Hints that at low √s

QGP turns off
Ordered phase transition
Critical Point

Future data:

Examine regions of interest
Maximizing fraction particles
measured
Probe lower √s
High(er) luminosities
Change species

Million Events

Turn trends and features into definitive conclusions

0.4

0.3

 $\mu_{_{\text{Pl}}}$ (GeV)

2015LRP

Planned low energy running

μ _B (MeV)	560 - 230	850 - 670	790	720 - 210	750 - 330	780 - 400	850 - 490
√s _{NN} (GeV)	4.9-17.3	2-3.5	2.4	3-19.6	2.7-11	2.7-8.2	2-6.2
Facility	SPS	NICA	SIS-18	RHIC	NICA	SIS-100	J-PARC HI
Experiment	NA61/ SHINE	FXT	HADES	STAR	MPD	СВМ	
Start Year	2009	2017	2018	2019	2020	2022	2025
Physics	CP & Onset	Dense Baryon	Dense Baryon	CP and Onset	Onset & Dense Baryon	Onset & Dense Baryon	Onset & Dense Baryon

Expect wealth of new insights over next ~5 years

BES-II: Vorticity and Initial B-field

BES-I: First measurement of A Global Polarization

Vortical + Magnetic Contributions:

Current data barely stat. significant

EPD:

Improved EP resolution

BES-II: 3σ effect

Unique measurement of B Significant input to CME/CVE interpretations

Strong suppression of high p_T particles

Light quarks and gluons strongly coupled to the medium

Di-jet imbalance AJ Au-Au 0-20% R=0.4

Au-Au di-jets more imbalanced than p-p for p_Tcut>2 GeV/c

Au-Au A_J ~ p-p A_J for matched di-jets (R=0.4)

Where does the energy go?

γ-hadron correlationsγ - Energy calibrationI_{AA} as function of "cone R"

E remains correlated to jet axis but at large angles

"Lost" hard particles emerge as multiple soft particles

Strangeness saturation in pp?

Steep rise in strangeness yields per π as function of event activity

Strong function of strangeness content

Trend in pp same as that in p+Pb with smooth transition to Pb+Pb

Not reproduced by models

Is this increase dependent on p_T and/or event activity definition as for HF?

HF production versus event activity

Self normalized yields grows faster than event activity at both LHC and RHIC

Soft vs hard processes competing? MPI at work?

Also seen in p+Pb
NPE show no difference above/below 4 GeV/c
b behaves like c

Results depend on where event activity measured

Small systems - an ongoing debate

Evidence of collective motion in high multiplicity p-p, p-Pb, He³-Au, p-Au, p-Al, and d-Au

Some trends fit with those from A-A Magnitude reduces with √s_{NN} limited evidence at 19.6 GeV

