QCD in Heavy-Ion Physics

Helen Caines - Yale University
Many phases and phase transitions in the early universe

So far only QGP-hadron phase transition can be recreated and studied in lab
Exploring the phase diagram of QCD

By changing beam energy we alter initial temperature and μ_B

Quark-Gluon Plasma

Hadron Gas

Nuclear Superconductor

Vacuum

Critical Point?

Temperature (MeV)

Baryon Chemical Potential μ_B (MeV)

Lattice Gauge Theory - increasing accuracy at $\mu_B=0$

$T_c = 154(9) \text{ MeV}$

$\varepsilon_c = 0.18-0.5 \text{ GeV/fm}^3 = (1.2-3.3) \rho_{\text{nuclear}}$
Exploring the phase diagram

By changing beam energy we alter initial temperature and μ_B

Calculations disfavor C.P. in region $\mu_B/T < 2$ and $T/T_C(\mu_B=0) > 0.9$

Helen Caines
Early conditions: Temperature

Initial temperature well above T_c even at $\sqrt{s_{NN}} = 39$ GeV

T_{eff} vs. collision energy $\sqrt{s_{NN}}$

- **PHENIX** $\sqrt{s_{NN}} = 200$ GeV, 0-94%
 - Fit range $p_T \in [1.0 \text{ GeV}, 5.0 \text{ GeV}]
 - Cu+Cu $T_{eff} = 288 \pm 49 \pm 50$ MeV/c

- **PHENIX** $\sqrt{s_{NN}} = 62.4$ GeV, 0-86%
 - Fit range $p_T \in [0.5 \text{ GeV}, 2.0 \text{ GeV}]
 - Au+Au $T_{eff} = 211 \pm 24 \pm 44$ MeV/c

- **PHENIX** $\sqrt{s_{NN}} = 39$ GeV, 0-86%
 - Fit range $p_T \in [0.5 \text{ GeV}, 2.0 \text{ GeV}]
 - Au+Au $T_{eff} = 177 \pm 31 \pm 68$ MeV/c

- **ALICE** $\sqrt{s_{NN}} = 2760$ GeV, 0-20%
 - Fit range $p_T \in [0.9 \text{ GeV}, 2.1 \text{ GeV}]
 - Pb+Pb $T_{eff} = 297 \pm 12 \pm 41$ MeV/c

- **PHENIX** $\sqrt{s_{NN}} = 200$ GeV, 0-92%
 - Fit range $p_T \in [0.6 \text{ GeV}, 2.0 \text{ GeV}]
 - Au+Au $T_{eff} = 242 \pm 28 \pm 7$ MeV/c

- **PHENIX** $\sqrt{s_{NN}} = 62.4$ GeV, 0-86%
 - Fit range $p_T \in [0.5 \text{ GeV}, 2.0 \text{ GeV}]
 - Cu+Cu: γ prompt subtracted
 - Au+Au: γ prompt unsubtracted

- **PHENIX** $\sqrt{s_{NN}} = 39$ GeV, 0-86%
 - Fit range $p_T \in [0.5 \text{ GeV}, 2.0 \text{ GeV}]
 - Au+Au: γ prompt unsubtracted

T_c from direct photon p_T spectra
Searching for a Critical Point

Critical Points:
- divergence of susceptibilities
e.g. magnetism transitions
- divergence of correlation lengths
e.g. critical opalescence

Lattice QCD:
Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point
Searching for a Critical Point

Critical Points:
- divergence of susceptibilities
e.g. magnetism transitions
- divergence of correlation lengths
 e.g. critical opalescence

Lattice QCD:
Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point

Divergences of conserved quantities may survive in the final state
⇒ non-gaussian fluctuations of net-baryon density

Kurtosis x Variance$^2 \sim \chi^{(4)}/\chi^{(2)}$
Presence of Critical Point?

Correlation lengths diverge

→ Net-p $\kappa \sigma^2$ diverge

Peripheral collisions: smooth trend

- HADES: Preliminary
 - (Net-)protons
 - HADES 0-10 %
 - HADES 30-40 %
 - STAR 0-5 %
 - STAR 30-40 %

NB: Different y and p_T ranges
Presence of Critical Point?

Correlation lengths diverge
→ Net-p κσ² diverge

Peripheral collisions:
smooth trend
Top 5% central collisions:
Non-monotonic behavior

NB: Different y and p_T ranges
Presence of Critical Point?

Correlation lengths diverge

→ Net-p $\kappa \sigma^2$ diverge

Peripheral collisions:
- smooth trend
Top 5% central collisions:
- Non-monotonic behavior

Hints of Critical fluctuations

NB: Different y and p_T ranges

Net-p $\kappa \sigma^2$ diverge
Presence of Critical Point?

Correlation lengths diverge

→ Net-p $\kappa \sigma^2$ diverge

Peripheral collisions: smooth trend

Top 5% central collisions: Non-monotonic behavior

Hadron gas model (UrQMD) no CP: shows suppression at lower energies - baryon number conservation

Hints of Critical fluctuations
Intermediate summary

A lot happening around 20 GeV - hard to believe its multiple different causes

High statistics exploration of QCD phase diagram and its key features is about to begin

New data from FAIR, NICA, RHIC and SPS just around the corner
Significantly extended detection capabilities compared to existing data

Strong theoretical interest focussed in BEST and HICforFAIR, increased number of focussed workshops

STAR BES-II (2019-2020) Turn trends and features into definitive conclusions
Using “hard” particles as probes

‘Hard’ processes have a large scale in calculation → pQCD applicable:

- **high** momentum transfer Q^2
- **high** transverse momentum p_T
- **high** mass m (N.B.: since $m\gg0$ heavy quark production is ‘hard’ process even at low p_T)

Early production in parton-parton scatterings with large Q^2
Using “hard” particles as probes

‘Hard’ processes have a large scale in calculation → pQCD applicable:

• **high** momentum transfer Q^2
• **high** transverse momentum p_T
• **high** mass m (N.B.: since $m>>0$ heavy quark production is ‘hard’ process even at low p_T)

Early production in parton-parton scatterings with large Q^2

Direct interaction with partonic phases of the reaction

i.e. a calibrated probe

Look for attenuation/absorption/modification of probe
Jet quenching at 5 TeV

When comparing hadrons and jets note that:

A very high p_T hadron comes from a parton that fragmented very hard (low mass) and that consequently suffered less quenching.

Colorless objects should not interact with colored QGP

no suppression

Not significantly different to values at 2.76 TeV

Strong suppression up to $p_T \sim 1$ TeV

$R_{AA}(p_T) = \frac{\text{Yield}(A + A)}{\text{Yield}(p + p) \times \langle N_{\text{coll}} \rangle}$
Jet quenching at 5 TeV

\[R_{AA}(p_T) = \frac{\text{Yield}(A+A)}{\text{Yield}(p+p) \times N_{\text{coll}}} \]

- Colorless objects should not interact with colored QGP
- No suppression

Pb+Pb 5.02 TeV, 0.49 nb⁻¹
pp 5.02 TeV, 25 pb⁻¹

Strong suppression up to \(p_T \sim 1 \) TeV

Compensating effects of higher \(E_{\text{loss}} \), flatter \(p_T \) spectrum, q/g differences

Not significantly different to values at 2.76 TeV
Charm-medium interactions

At both RHIC and LHC:
- low p_T: D^0 v_2
- high p_T: D^0 R_{AA} ~ light hadron R_{AA}

Strong charm-medium interactions at LHC and RHIC
Charm-medium interactions

At both RHIC and LHC:
- low p_T: $D^0 v_2$
- high p_T: $D^0 R_{AA} \sim$ light hadron R_{AA}

Strong charm-medium interactions at LHC and RHIC

Joint fit: Diffusion coefficient $D_s \sim 1/(2\pi T) \ast (2-12)$

Even at RHIC charm thermalized
Melting charmonia

Low p_T: LHC$_{2.76} >$ RHIC
decreasing regeneration; less c quarks

High p_T: LHC$_{2.76} <$ RHIC
decreasing dissociation; cooler medium

At LHC many J/ψ result of coalesced thermalized charm

E. Scomparin, Quarkonium production in AA collisions, QM2017, Chicago, February 2017
At LHC
5 TeV - Highest precision yet

Sequential suppression
\(R_{AA}(\Upsilon(1S)) < R_{AA}(\Upsilon(2S)) \)

\(\Upsilon(3S) \) still no observation
Melting bottomonia

At LHC
5 TeV - Highest precision yet

Sequential suppression
$R_{AA}(\Upsilon(1S)) < R_{AA}(\Upsilon(2S))$

$\Upsilon(3S)$ still no observation

At RHIC: First precise results

Sequential suppression
$R_{AA}(\Upsilon(1S)) < R_{AA}(\Upsilon(2S)+\Upsilon(3S))$

Hints of less suppression at RHIC
Determining initial parton energy

Di-jet expectations

Back-to-back in ϕ

$$\Delta \phi = \phi_1 - \phi_2$$

Equal but opposite momenta

$$A_J = \frac{p_{T_{\text{Lead}}} - p_{T_{\text{SubLead}}}}{p_{T_{\text{Lead}}} + p_{T_{\text{SubLead}}}}$$

$$x_J = \frac{p_{T_{\text{Jet}}}}{p_{T_{\text{T rig}}}}$$

Modification from p-p - reveal details of interaction with QGP
Di-jets are not deflected

Examine $\Delta \phi$ - azimuthal angle between hadron-jets, z-jet, γ-jet

Leading order expectation: $\Delta \phi \sim \pi$

Little to no azimuthal de-correlation observed

Partons lose energy but are not deflected from original path
Di-jets are imbalanced

γ (Z) triggers “Absolute” E_{loss} calibration.

Z-jet distribution consistent with γ-jet

Fractional E_{loss} decreases with p_T

$p_T > 200$ GeV

Pb-Pb approaches pp

For all centrality inclusive ~ di-b

Inclusive: q and g

di-b: q

Probing parton flavor energy loss with ever enhancing precision
Lost energy of a recoil jet

\[\beta_s \approx \frac{200 \text{ GeV}}{4 \text{ GeV}} \]

\[R = 0.2 \]

\[R = 0.5 \]
Lost energy of a recoil jet

RHIC: Jet p_T = 10-20 GeV

R=0.2: $p_{T,\text{Shift}} \sim -4.4 \pm 0.2 \pm 1.2$ GeV
R=0.5: $p_{T,\text{Shift}} \sim -2.8 \pm 0.5 \pm 1.2$ GeV
Lost energy of a recoil jet

RHIC: Jet $p_T = 10-20$ GeV
R=0.2: $p_{T,\text{Shift}} \sim -4.4 \pm 0.2 \pm 1.2$ GeV
R=0.5: $p_{T,\text{Shift}} \sim -2.8 \pm 0.5 \pm 1.2$ GeV

LHC: Jet $p_T = 60-100$ GeV
R=0.5: $p_{T,\text{Shift}} \sim -8 \pm 2$ GeV

Energy almost recovered at moderate angles at RHIC but not at LHC
Probing the jet substructure

Jet mass: \(M = \sqrt{E^2 - p^2} \)

Angular spread of constituents “generates” mass

Pb-Pb : Closer to pp than quenching models
Probing the jet substructure

Jet mass: \(M = \sqrt{E^2 - p^2} \)

Angular spread of constituents “generates” mass

Pb-Pb : Closer to pp than quenching models

Pb-Pb inclusive jets have “harder cores” than pp jets of same energy

“Groom” jet into two subjets

\[z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \]

Significant change at LHC for inclusive jets 140<p_T<200 GeV/c
What has all this taught us?

Different initial conditions and evolutionary paths:

\[\hat{q} = \frac{Q^2}{L} \]

- \(Q \) - mtm transfer to medium
- \(L \) - path length

\[\hat{q}(t=0.6\,\text{fm/c}) \approx 1.2 \pm 0.3 \quad \text{GeV}^2/\text{fm}^3 \quad T=370 \,\text{MeV} \]
\[1.9 \pm 0.7 \quad \text{GeV}^2/\text{fm}^3 \quad T=470 \,\text{MeV} \]

Probes behave differently at RHIC and LHC
What has all this taught us?

Different initial conditions and evolutionary paths:

\[q = \frac{Q^2}{L} \quad Q \text{ - mtm transfer to medium} \]
\[L \text{ - path length} \]

\[q(t=0.6\text{fm/c}) \sim 1.2 \pm 0.3 \quad \text{GeV}^2/\text{fm} \quad T=370 \text{ MeV} \]
\[1.9 \pm 0.7 \quad \text{GeV}^2/\text{fm} \quad T=470 \text{ MeV} \]

Probes behave differently at RHIC and LHC

Different virtuality evolutions:

How/when does parton become “aware” of medium
Other significant recent progress

Sophisticated multi-stage modeling
Fluctuating lumpy initial conditions
Event-by-event calculations just as for real data

Bayesian multi-parameter fits
Data prefer:
EoS determined by LQCD
IP-Glasma initial conditions

Precision estimates of η/s approaching ever closer to lower bound
- also as function of $\sqrt{s_{NN}}$
Precision measurements of $\eta_{\text{dijet}} = (\eta_1 + \eta_2)/2 \propto 0.5 \log(x_p/x_{pB}) + \eta_{CM}$

Theoretically: can be calculated in pQCD

Experimentally: “avoid” fragmentation and hadronization effects

Neither PDFs nor nPDFs gives good fit across whole range

Evidence of gluon modification in EMC region $x > 0.3$
Minbias R_{pPb}

Consistent with nPDF expectations

Nothing enormously unexpected is occurring!
Collectivity in pp and p-Pb

pp:
- No dependence on \sqrt{s}
- No dependence of event activity

p-Pb:
- No dependence on \sqrt{s}
- Some dependence of event activity

Heavy quarks also reveal signal but $v_2^\mu < v_2^h$

Sufficient (re-)interactions to (partially) thermalize heavy quarks?

High multiplicity events lead to universal observation of long range collective phenomena
Varying the small systems

V2

0-5% \(\sqrt{s} = 200 \text{ GeV} \)

- **\(^3\text{He+Au} v_2 \sim v_3 \) (PRL 115, 142301)**
- **d+Au \(v_2 \)**
- **SONIC \(^3\text{He+Au} \)**
- **SONIC d+Au**

PHENIX

Preliminary

Changing initial collision geometry changes \(v_n \) as expected from models

200 GeV

62.4 GeV

39 GeV

19.6 GeV

\(v_2 \) real down to 20 GeV

No signs of “rapid” onset in \(\sqrt{s} \) or mult.
Our Long Range Plan

Continues as a vibrant field with wide ranging international support

New detectors being designed and built NOW!

New accelerator facilities being designed and built NOW!

sPHENIX, Forward upgrades at STAR, upgrades at LHC, FAIR, NICA, EIC
Spares
The timeline of a heavy-ion collision

Relativistic Heavy-Ion Collisions

made by Chun Shen

Initial energy density

QGP phase

Hadron gas phase

Hadronization

Kinetic freeze-out

final detected particle distributions

\[\pi \]

\[K \]

\[p \]

\[e^+ \]

\[e^- \]

\[\gamma \]

collision overlap zone

pre-equilibrium dynamics

viscous hydrodynamics

collision evolution

free streaming

\[\tau \sim 0 \text{ fm/c} \quad \tau \sim 1 \text{ fm/c} \]

\[\tau \sim 10 \text{ fm/c} \]

\[\tau \sim 10^{15} \text{ fm/c} \]
Early conditions: Temperature

Direct Photons:
- no charge or color → don’t interact with medium
- emitted over all lifetime → convolution of all T

Theory well developed

QGP dominates: $1 < p_T < 3$ GeV/c
Early conditions: Temperature

Direct Photons:
- no charge or color → don’t interact with medium
- emitted over all lifetime → convolution of all T

Theory well developed

![Diagram showing direct photon spectra in Pb–Pb collisions at 2.76 TeV](image)

- QGP dominates: $1 < p_T < 3$ GeV/c

![Graph comparing model calculations from Refs. 59–62 with the direct photon spectra in ALICE](image)

- $T_{eff} \approx 300$ MeV

Comment:
- Hadron gas
- QGP ($T=370$ MeV)
- initial pQCD (pp)
- sum

Legend:
- 0-20% ALICE
- 20-40% ALICE
- 40-80% ALICE

References:
- Turbide et al. PRC 69 014903 (2004)
- Linnyk et al.
- Paquet et al.
- Chatterjee et al.
- NPA 933(2015) 256
- JHEP 1305(2013) 030

Author: Helen Caines

Note:
- $s_{NN}=2.76$ TeV
- T_{eff} is the effective temperature at the center of the collision.
- The hadron gas model does not include QCD contributions.
- The QGP model is based on a massive Yang-Mills theory.
- The hydrodynamic calculations are compared to state-of-the-art direct photon spectra.
- The analysis is performed for various centrality classes.

For a recent review:
- Ref. [69].
First order phase transition?

Low \sqrt{s}: slope v_1 (baryons) positive
slope v_1 (mesons) negative

Beam energy baryon dv_1/dy trend
complex interplay of:
v_1 baryons transported from beam
v_1 from pair production

Low \sqrt{s}: slope v_1 (baryons) positive
slope v_1 (mesons) negative
First order phase transition?

Low \sqrt{s}: slope v_1(baryons) positive
slope v_1(mesons) negative

Beam energy baryon dv_1/dy trend
complex interplay of:

v_1 baryons transported from beam

v_1 from pair production

Net-proton isolates directed flow of transported baryons:

Double sign change in dv_1/dy

Not seen in net-kaons

Results not yet reproduced by theory
Stalling of the expansion?

d final state coalescence access to nucleon freeze-out volume

\[E_A \frac{d^3N_A}{d^3p_A} \approx B_A \left(E_p \frac{d^3N_p}{d^3p_p} \right)^A \]

B_2 minimum (V maximum) \(\sqrt{s_{NN}} \approx 20 \text{ GeV} \)

\(B_2 = \frac{6\pi^3 R_{np} m_d}{m_p V_f} \)

\(\tau_f \approx \frac{\langle m_N \rangle}{6\pi^3} \) for the world's data set. A small theoretical calculation.

(\(R_{out}^2 - R_{side}^2 \)) sensitive to emission duration

Maximum at \(\sqrt{s_{NN}} \approx 20 \text{ GeV} \)

Sign of entering compressed baryonic matter regime?

Softening of EoS?
Disappearance of QGP?

High p_T suppression gone

ϕ $v_2 \sim 0$

Several standard signals disappear at $\sqrt{s} < 15$ GeV

STAR Preliminary

Si Horvat QM2015

STAR

PRC 93 (2016) 14907

Helen Caines
A lot is happening around 20 GeV

Hard to believe this is a conspiracy of different underlying causes

STAR/PHENIX/ALICE Data

Centaur H1 Collisions

E864/E866/E877/NA49/PHENIX/STAR

Helen Caines
Improving on current data

Current low energy data:
Hints that at low \sqrt{s}
QGP turns off
Ordered phase transition
Critical Point

Future data:
Examine regions of interest
Maximizing fraction particles measured
Probe lower \sqrt{s}
High(er) luminosities
Change species

Turn trends and features into definitive conclusions
Planned low energy running

<table>
<thead>
<tr>
<th>μ_B (MeV)</th>
<th>SPS 600 - 230</th>
<th>850 - 670</th>
<th>790</th>
<th>720 - 210</th>
<th>750 - 330</th>
<th>780 - 400</th>
<th>850 - 490</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s_{NN}}$ (GeV)</td>
<td>4.9 - 17.3</td>
<td>2 - 3.5</td>
<td>2.4</td>
<td>3 - 19.6</td>
<td>2.7 - 11</td>
<td>2.7 - 8.2</td>
<td>2 - 6.2</td>
</tr>
<tr>
<td>Facility</td>
<td>SPS</td>
<td>NICA</td>
<td>SIS-18</td>
<td>RHIC</td>
<td>NICA</td>
<td>SIS-100</td>
<td>J-PARC</td>
</tr>
<tr>
<td>Experiment</td>
<td>NA61/SHINE</td>
<td>FXT</td>
<td>HADES</td>
<td>STAR</td>
<td>MPD</td>
<td>CBM</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>CP & Onset</td>
<td>Dense Baryon</td>
<td>Dense Baryon</td>
<td>CP and Onset</td>
<td>Onset & Dense Baryon</td>
<td>Onset & Dense Baryon</td>
<td>Onset & Dense Baryon</td>
</tr>
</tbody>
</table>

Expect wealth of new insights over next ~5 years.
BES-II: Vorticity and Initial B-field

BES-I: First measurement of Λ Global Polarization

Vortical + Magnetic Contributions:
Current data barely stat. significant

EPD:
Improved EP resolution

BES-II: 3σ effect

Unique measurement of B
Significant input to CME/CVE interpretations
Strong suppression of high p_T particles

![Graph showing p_T distribution](image)

- **High p_T hadrons:**
 - at RHIC: from quarks
 - at LHC: from gluons

Light quarks and gluons strongly coupled to the medium
Di-jet imbalance A_J Au-Au 0-20% $R=0.4$

$A_J = \frac{p_T^{Lead} - p_T^{SubLead}}{p_T^{Lead} - p_T^{SubLead}}$

Anti-k_T $R=0.4$, $p_{T,1}>20$ GeV & $p_{T,2}>10$ GeV with $p_T^{cut}>2$ GeV/c

|A_J|

Event Fraction

- tracking eff. 6%
- tower energy scale 2%

Au-Au di-jets more imbalanced than p-p for $p_T^{cut}>2$ GeV/c

Au-Au $A_J \sim p$-p A_J for matched di-jets (R=0.4)
Where does the energy go?

ATLAS Preliminary
Pb+Pb $s_{NN}=2.76$ TeV
$L_{int}=0.14$ nb$^{-1}$

anti-k_T $R=0.3$
$p_T^{jet} > 92$ GeV
0-10%/60-80%

“Lost” hard particles emerge as multiple soft particles

$	\Delta\phi-\pi	< \pi/6$
$	\Delta\phi-\pi	< \pi/3$
$	\Delta\phi-\pi	< \pi/2$

γ-hadron correlations

γ - Energy calibration
I_{AA} as function of “cone R”

E remains correlated to jet axis but at large angles

ATLAS-CONF-2012-115

arXiv:1212.3323

5 < p_T^{γ} < 9 GeV/c x 0.5 < p_T^{h} < 7 GeV/c

0-40% Au+Au

PHENIX

- global sys = ± 6% (a)

Helen Caines
Strangeness saturation in pp?

Steep rise in strangeness yields per π as function of event activity

Strong function of strangeness content

Trend in pp same as that in p+Pb with smooth transition to Pb+Pb

Not reproduced by models

Is this increase dependent on p_T and/or event activity definition as for HF?
HF production versus event activity

Self normalized yields grows faster than event activity at both LHC and RHIC

Soft vs hard processes competing?

MPI at work?

Also seen in p+Pb

NPE show no difference above/below 4 GeV/c

b behaves like c

Results depend on where event activity measured

Physics or ill defined reference?
Small systems - an ongoing debate

Evidence of collective motion in high multiplicity p-p, p-Pb, He3-Au, p-Au, p-Al, and d-Au

Some trends fit with those from A-A

Magnitude reduces with $\sqrt{s_{NN}}$

limited evidence at 19.6 GeV