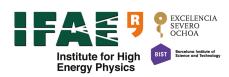
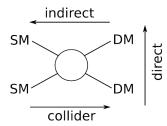
SEARCHES FOR DARK MATTER WITH THE ATLAS DETECTOR


Cora Fischer, on behalf of the ATLAS collaboration

Institut de Física d'Altes Energies Barcelona

April 4, 2017

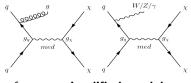
Deep Inelastic Scattering 2017, Birmingham


Motivation

Why search for 'dark matter'?

- strong evidence from several observations: rotational velocities in spiral galaxies, galaxy clusters, bullet cluster...
- ullet cosmic microwave background: $\sim 26\%$ of universe made up by dark matter

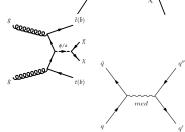
What is dark matter?


- at least gravitional interaction, at most weak interaction with SM sector
- stable on cosmological time scale
- \Rightarrow focus on **WIMP** model for dark matter: weakly interacting, massive (non relativistic), stable
- \hookrightarrow production at colliders possible

Dark Matter Searches at the LHC

How to look for dark matter?

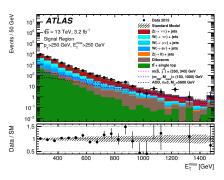
WIMPs can only be recognised as E_T at the LHC: need a recoiling object: jets, $W/Z, \gamma$, Higgs boson


focus on simplified models

event signatures denoted as Mono-X:

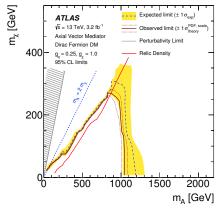
- jet $+ \cancel{E}_T$
- $-\gamma + \not\!\!E_T$
- $W/Z + \cancel{E}_T$
- \hookrightarrow different decay modes

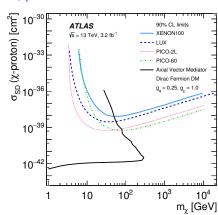
- Higgs $+ \not\!\! E_T$
- → Higgs directly involved in


WIMP production

- dark matter+heavy flavour production:
- di-jet resonant production: mediator can also decay to quarks

Strategy: search for an abundance of events with high E_T , a high p_T jet and 0 leptons

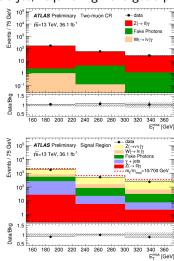

- at most four jets ($p_T > 30 \text{ GeV}$)
- $E_T > 250 \text{ GeV}$
- leading jet $p_T > 250 \text{ GeV}$



- control regions defined to estimate W/Z+jets background: lepton veto inverted, E_T defined to mimic $p_T(W/Z$ -boson)
- ullet simultaneous fit to $ot\!\!\!E_T\colon o
 ot\!\!\!E_T$ -dependent scale factors for background normalisation
- dominant background: $Z(\nu\nu)$ +jets: normalised via $W(\mu\nu)$ +jets scale factor, theory transfer uncertainty applied in signal region

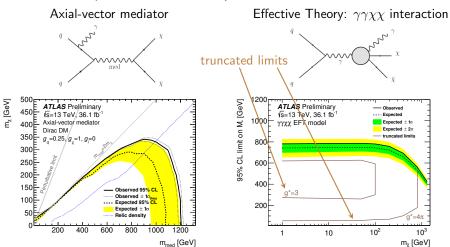
No excess found: limit on dark matter production via Z'-like mediator:

 \hookrightarrow axial-vector coupling with $g_\chi=1.0$ and $g_q=0.25$



 \hookrightarrow derivation of scattering cross section limit: ATLAS constraint competitive for low DM masses

Monophoton Search (36.1 fb $^{-1}$) Brand NEW Link

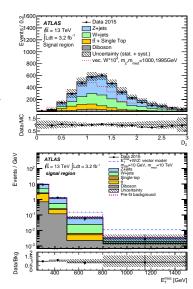

Similar to monojet: instead of high energetic jet, require high energetic photon

- 1 isolated photon with $p_T > 150$ GeV, no leptons
- $E_T > 150$ GeV, at most one jet with $p_T > 30$ GeV
- combination of data-driven methods and MC
- fit to E_T : $W/Z\gamma$ backgrounds scale factors
- Dominant background $Z(\nu\nu)\gamma$ normalised by $Z(\ell\ell)\gamma$ scale factors

Monophoton Search (36.1 fb $^{-1}$) Brand NEW Link

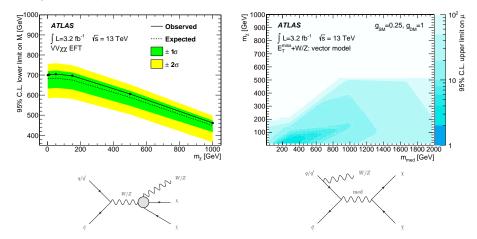
Use binned fit to E_T -distribution to interpret results in terms of DM models:

 \hookrightarrow analysis sensitivity dominated by statistical uncertainty in control regions


Mono- $V(\rightarrow \text{hadrons})$ Search (3.2 fb⁻¹) Phys. Lett. B 763, 251

Search for $W/Z + \not\!\!\!E_T$ with hadronically decaying W/Z \hookrightarrow analysis similar to monoiet search but with

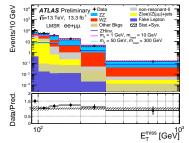
- require large-R jets: both decay products of W/Z contained (R=1.0, anti- k_t) \hookrightarrow substructure described by jet mass and D₂ (two distinct energy concentrations)
- $p_T(\text{large-}R \text{ jet}) > 200 \text{ GeV}$, $|\eta| < 2.0$, $E_T > 250 \text{ GeV}$
- no leptons allowed

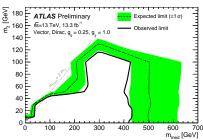

focus on large-R jets

• dominant background $Z(\nu\nu)$ +jets \hookrightarrow normalised via $Z(\mu\mu)$ +jets estimation

Mono- $V(\rightarrow hadrons)$ Search (3.2 fb⁻¹) Phys. Lett. B 763, 251

Background-prediction in agreement with data: limits are set on effective field theory and simplified models:

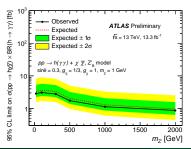



 \hookrightarrow main limitations: statistics, modelling of large-R jet observables

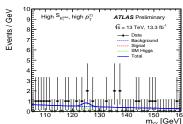
Mono- $Z(\rightarrow \ell\ell)$ Search (13.3 fb $^{-1}$) ATLAS-CONF-2016-056

Signature: opposite sign leptons and $\not\!\!E_T$

- require $E_T > 90$ GeV, boosted Z-boson with $\Delta R(\ell\ell) < 1.8, b$ -veto
- dominant background: $ZZ \rightarrow \ell\ell\nu\nu$ production
- differential m_{ZZ} cross section corrected to NNLO QCD and NLO EW calculation
- WZ background normalized to NNLO QCD and fitted in control regions with 3 leptons
- \bullet $Z+{\rm jets}$ background data driven, non resonant background from $e\mu$ control regions
- *Z*+jets uncertainty dominates
- limit on vector mediator in simplified model of WIMP production

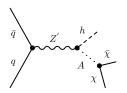


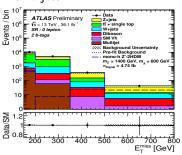
Mono-Higgs, $H \to \gamma \gamma$ (13.3 fb⁻¹) ATLAS-CONF-2016-087

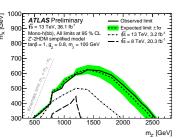

Higgs involved in WIMP production: different models: coupling to heavy mediator Z^\prime , coupling to Z^\prime and pseudo-scalar A^0 (2HDM)

- two photons with $p_T > 25$ GeV, $105 < m_{\gamma\gamma} < 160$ GeV
- $\begin{array}{l} \bullet \ \ {\rm categories} \ {\rm in} \ \rlap{/}{E_T}/\sqrt{\sum E_T} \ {\rm and} \ p_T^{\gamma\gamma} \\ \hookrightarrow \ {\rm highest} \ {\rm sensitivity} \ {\rm to} \ {\rm vector} \\ {\rm mediator} \ (Z_B') \ {\rm for} \ {\rm high} \ \rlap{/}{E_T}/\sqrt{\sum E_T} \\ {\rm and} \ p_T^{\gamma\gamma} \\ \end{array}$

Higgs ISR suppressed due to Yukawa coupling

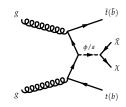



- background in $m_{\gamma\gamma}$ fitted with exponential function+double sided crystal ball (Higgs resonance)
- ullet signal (crystal ball) fitted to 0 o upper cross section limits as function of heavy mediator masses derived


Mono-Higgs, $H \rightarrow bb$ (36.1 fb⁻¹) **Brand NEW Link**

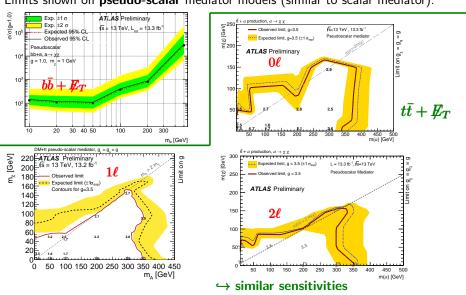
Search similar to mono- $H(\to \gamma \gamma)$: final state now with b-jets

- $\frac{\textit{resolved} \text{ region:}}{E_T < 500 \text{ GeV}}$ two distinct b-jets,
- $\underline{\textit{merged}}$ region: $E_T > 500$ GeV: boosted $\overline{\text{Higgs}} \to \text{large-}R$ jet with substructure
- shape-fit to m_{jj} or m_J in different categories of $\not\!\!E_T$ and #b-jets, two dedicated control regions
- ullet main backgrounds: $W/Z+{
 m jets},\ tar t$
- dominant uncertainty: b-tagging, luminosity, JES, jet mass



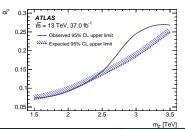
DM+Heavy Flavour Searches (13.3 fb $^{-1}$)

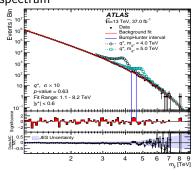
Searches for $b\bar{b} + \not\!\!E_T$ and $t\bar{t} + \not\!\!E_T$ production:

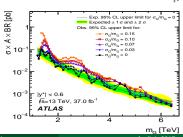

 \hookrightarrow sensitive to **(pseudo-)scalar** mediator

- DM+ $b\bar{b}$: ATLAS-CONF-2016-086
 - \hookrightarrow exactly two b-jets, 3rd jet veto, no leptons
 - \hookrightarrow dominant background $Z(\nu\nu)+b$ reduced by cut requiring separated b-jets, momentum imbalance
 - \hookrightarrow 3 CR, $Z(\nu\nu)+b$ constrained from $Z(\ell\ell)+b$
- **DM**+*tt*̄: ATLAS-CONF-2016-077, ATLAS-CONF-2016-050, ATLAS-CONF-2016-076
 - \hookrightarrow 0-leptons, 1-lepton or 2-leptons channels
 - \hookrightarrow many signal regions defined with help of different variables:
 - $\not\!\!E_T/\sqrt{H_T}, m_T$, razor variables...
 - \hookrightarrow dominant background is SM $tar{t}$ production: estimated in control regions

DM+Heavy Flavour Searches (13.3 fb⁻¹)

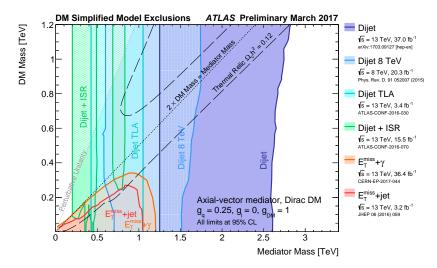

Limits shown on **pseudo-scalar** mediator models (similar to scalar mediator):

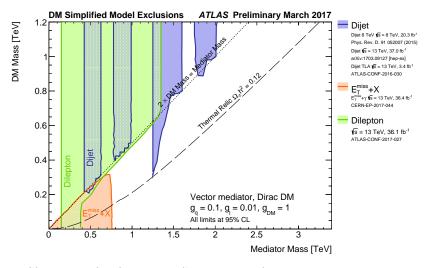



Di-jet Resonance Search (37 fb⁻¹) **Brand NEW Link**

Search for resonance in di-jet invariant mass spectrum

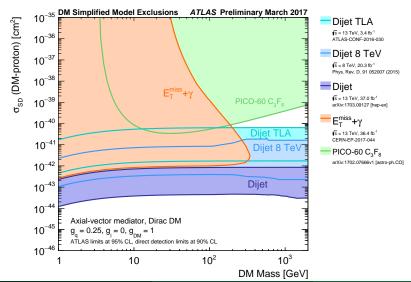
- see talk by Hanno Meyer zu Theenhausen (Wed. 2 pm)
- limits are set on excited quarks q^* , quantum black holes, $W', \mathbf{Z'}, W^*$, generic Gauss-shaped resonances
- ullet in context of simplified models: limit on coupling g_q to standard model particles as a function of the mediator mass $m_{Z'}$



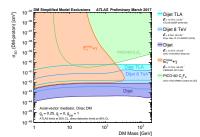

Combination of Exclusions I

Combining dark matter searches in terms of simplified models with an axial-vector mediator model:

Combination of Exclusions II


With less 'optimistic' coupling to standard model quarks: $g_q = 0.1$:

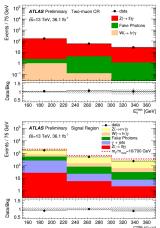
 \rightarrow dilepton results shown, coupling suppressed: $g_\ell=0.01$


Combination of Exclusions III

Limit on spin-dependent WIMP-proton scattering cross section:

Summary and Outlook

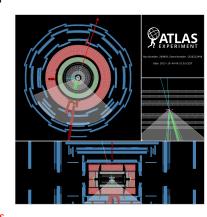
- a variety of dark matter searches carried out throughout 2015 and 2016 data taking
 - \hookrightarrow many new results, many new results to come soon with full 2015+2016 data set
- interpretations focused on simplified models: dark matter production via heavy mediator
 - \hookrightarrow model dependent approach


- no evidence for dark matter found so far
 - \hookrightarrow stay tuned for new results with 3-10× increased data sets

BACKUP

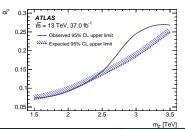
Monophoton Search (36.1 fb $^{-1}$) Brand NEW Link

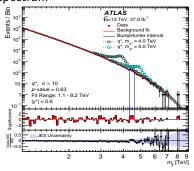
Similar to monojet: instead of high energetic jet, require high energetic photon

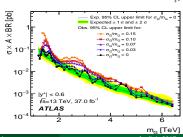

- ullet 1 isolated photon with $p_T > 150$ GeV, no leptons
- $E_T > 150$ GeV, at most one jet with $p_T > 30$ GeV
- 4 control regions to estimate $W/Z\gamma$ and $\gamma+{\rm jets}$ background: use low- E_T region
- fake photon estimation data-driven: ABCD method for jets faking γ , $Ze\gamma/Zee$ ratio measurement for e faking γ

Simultaneous fit in control regions and signal regions to $\not\!\!E_T$: independent normalisation factors per $\not\!\!E_T$ -bin for $W/Z\gamma$ backgrounds Dominant background $Z(\nu\nu)\gamma$ normalised by $Z(\ell\ell)\gamma$ scale factors

Mono- $V(\rightarrow \text{hadrons})$ Search (3.2 fb⁻¹) Phys. Lett. B 763, 251


- require large-R jets: both decay products of W/Z contained $(R=1.0, \, \text{anti-}k_t)$ \hookrightarrow substructure described by jet mass and D₂ (two distinct energy concentrations)
- $p_T(\text{large-}R \text{ jet}) > 200 \text{ GeV}$, $|\eta| < 2.0$, $\not\!\!E_T > 250 \text{ GeV}$, $\Delta\phi(\not\!\!E_T,\text{narrow jet}) > 0.6$
- no leptons
- dominant background $Z(\nu\nu)$ +jets \hookrightarrow three control regions defined \hookrightarrow simultaneous fit to E_T -distribution performed: single normalisation factors for W/Z+jets, $t\bar{t}$ backgrounds $\hookrightarrow Z(\nu\nu)$ +jets normalised with $Z(\mu\mu)$ +jets scale factor




Di-jet Resonance Search (37 fb⁻¹) **Brand NEW Link**

Search for resonance in di-jet invariant mass spectrum

- background completely data-driven: sliding window fit with $f(x) = p_1(1-x)^{p_2}x^{p_3}$
- limits are set on excited quarks q^* , quantum black holes, $W', \mathbf{Z'}, W^*$
- limits are also set on generic Gauss-shaped resonances with mass m_G (truth level)
- ullet in context of simplified models: limit on coupling g_q to standard model particles as a function of the mediator mass $m_{Z'}$

