

Searches

for VH, HH,

VV, $V+\gamma/\gamma\gamma$

Resonances

on behalf of the ATLAS COLLABORATION


```
/ Infrastructure i
include "xAODRootA
include "xAODRootA
include "xAODRootA
include "xAODEvent
include "FourMomUt
include "xAODBTagg
include "PathResol
include "TH1.h"
include "TH1F.h"
include "TTree.h"
include "TFile.h"
lass PisaxAODAnaly
// that way they
rotected:
// float cutValue
/// This is a poi
const xAOD::Event
/// This is a poin
const xAOD::Missin
BTaggingSelection
BTaggingEfficiency
std::unique ptr<CF
// protected from
// node (done by
ıblic:
/// This is the e
xAOD::TEvent* m ev
```

// this is a stand

PisaxAODAnalysis

Overview

- Diboson searches in ATLAS:
 - VV→qqqq, WV→ℓνqq, ZV→ℓℓqq, ννqq,
 WZ→ℓνℓℓ, ZZ→ℓℓℓℓ;
 - $\circ \qquad VH{\rightarrow}qqbb,\,VH{\rightarrow}\ell\nu bb,\,\ell\ell bb,\,\nu\nu bb;$
 - **HH** \rightarrow **bbbb**, bb $\gamma\gamma$, $\gamma\gamma$ WW*(\rightarrow $\ell\nu$ jj);
 - $\circ \quad \mathbf{Z} \mathbf{\gamma} \rightarrow \mathbf{\ell} \mathbf{\ell} \mathbf{\gamma}, \, \mathbf{q} \mathbf{q} \mathbf{\gamma};$
 - ο γγ;
- V = W or Z boson, H = Higgs boson, $\ell = e$, μ ;

```
include <EventLoop
include <EventLoop
include "xAODRootA
include "PathResol
include "TEfficiend
include "TH1F.h"
include "TTree.h"
include "TFile.h"
include "TStopwatch
lass PisaxAODAnalys
// put your confid
// that way they
rotected:
/// This is a poi
const xAOD::Event
/// This is a poin
const xAOD::Missin
BTaggingSelection
BTaggingEfficiency
std::unique ptr<CF
// protected from
// node (done by
ıblic:
/// This is the e
xAOD::TEvent* m ev
```

// this is a stan

PisaxAODAnalysis

Overview

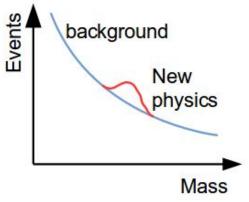
- Diboson searches in this talk:
 - \circ VV \rightarrow qqqq;
 - \circ VH \rightarrow qqbb;
 - \circ HH \rightarrow bbbb;
 - \circ $\mathbf{Z}\gamma \rightarrow \ell\ell\gamma$;
 - γγ;
- V = W or Z boson, H = Higgs boson, $\ell = e, \mu$;
- NOT all detailed in this talk!
- I have chosen one per channel (with the latest results).
- Reference for all analyses in back-up.
- See also today's talks by: Imma Riu and Yanlin Liu!

```
include <EventLoop
include <EventLoop
include "xAODRootA
include "PathResol
include "TH1F.h"
include "TTree.h"
include "TFile.h"
include "TStopwatch
lass PisaxAODAnalys
// put your confid
// that way they
rotected:
/// This is a poi
const xAOD::EventI
/// This is a poir
const xAOD::Missin
BTaggingSelection
BTaggingEfficiency
std::unique ptr<CF
// protected from
// node (done by
ıblic:
/// This is the e
xAOD::TEvent* m ev
```

// this is a stan

PisaxAODAnalysis

Overview

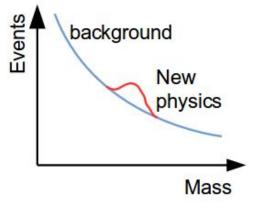

- Diboson searches in this talk:
 - \circ VV \rightarrow qqqq;
 - \circ VH \rightarrow qqbb;
 - \circ HH \rightarrow bbbb;
 - \circ $\mathbf{Z}\gamma \rightarrow \ell\ell\gamma$;
 - γγ;
- V = W or Z boson, H = Higgs boson, $\ell = e, \mu$;
- NOT all detailed in this talk!
- I have chosen one per channel (with the latest results).
- Reference for all analyses in back-up.
- See also today's talks by: Imma Riu and Yanlin Liu!
- Based on 2015+2016 data at 13 TeV:

include <EventLoop nclude <EventLoop nclude <EventLoop include "TStopwatch // put your confid // that way they rotected: // float cutValue const xAOD::Event /// This is a poir const xAOD::Missin BTaggingSelection BTaggingEfficiency std::unique ptr<CF // variables that // protected from

Overview

- Diboson searches in this talk:
 - \circ VV \rightarrow qqqq;
 - \circ VH \rightarrow qqbb;
 - HH→bbbb;
 - \circ $\mathbf{Z}\gamma \rightarrow \ell\ell\gamma$;
 - γγ;
- V = W or Z boson, H = Higgs boson, $\ell = e, \mu$;
- NOT all detailed in this talk!
- I have chosen one per channel (with the latest results).
- Reference for all analyses in back-up.
- See also today's talks by: Imma Riu and Yanlin Liu!
- Based on 2015+2016 data at 13 TeV:

Reconstruct decay product of resonance X. Look for a peak on a smooth background.


// node (done by
blic:
/// This is the e

```
include <EventLoop
// put your confi
// that way they
rotected:
// float cutValue
const xAOD::Event
/// This is a poin
const xAOD::Missin
BTaggingSelection
BTaggingEfficiency
std::unique ptr<CF
```

Overview

- Diboson searches in this talk:
 - \circ VV \rightarrow qqqq;
 - \circ VH \rightarrow qqbb;
 - \circ HH \rightarrow bbbb;
 - \circ $\mathbf{Z}\gamma \rightarrow \ell\ell\gamma$;
 - γγ;
- V = W or Z boson, H = Higgs boson, $\ell = e$, μ ;
- NOT all detailed in this talk! •
- I have chosen one per channel (with the latest results).
- Reference for all analyses in back-up.
- See also today's talks by: Imma Riu and Yanlin Liu!
- Based on 2015+2016 data at 13 TeV:

 Reconstruct decay product of resonance X. Look for a peak on a smooth background.

- Benchmark models;
 - Spin-0: <u>extended Higgs sector</u>;
 - Spin-1: <u>Heavy Vector Triplets</u> (HVT);
 - Model A: $g_v = 1$;
 - Model B: $g_v = 3$;
 - Spin-2: Randall-Sundrum Gravitons (RSG*).
- Reference in back-up.

xAOD::TEvent* m ev

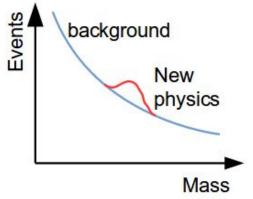
// variables that
// protected from

// node (done by **blic:** /// This is the e

```
include <EventLoop
include <EventLoop
// put your confi
```

```
// put your confi
// that way they
rotected:
// float cutValue
```

// float cutValue; /// This is a poir const xAOD::EventI // This is a poir const xAOD::Missir BTaggingSelectionI BTaggingEfficiency std::unique_ptr<CF

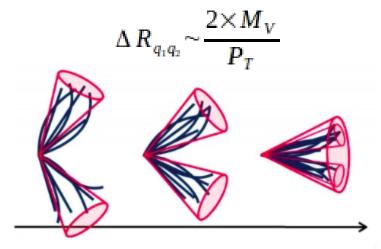

```
// variables that
// protected from
// node (done by t
blic:
/// This is the ev
```

/// This is the exxAOD::TEvent* m_ex

Overview

- Diboson searches in this talk:
 - \circ VV \rightarrow qqqq;
 - \circ VH \rightarrow qqbb;
 - HH→bbbb;
 - \circ $\mathbf{Z}\gamma \rightarrow \ell\ell\gamma$;
 - γγ;
- V = W or Z boson, H = Higgs boson, $\ell = e, \mu$;
- NOT all detailed in this talk! •
- I have chosen one per channel (with the latest results).
- Reference for all analyses in back-up.
- See also today's talks by: Imma Riu and Yanlin Liu!
- Based on 2015+2016 data at 13 TeV:
- Boson decay topology:
 - **Resolved**: low cross-section, low mass resonances.
 - Merged: optimization for high mass resonances;

 Reconstruct decay product of resonance X. Look for a peak on a smooth background.


- Benchmark models;
 - o Spin-0: extended Higgs sector;
 - Spin-1: <u>Heavy Vector Triplets</u> (HVT);
 - Model A: $g_v = 1$;
 - Model B: $g_v = 3$;
 - Spin-2: Randall-Sundrum Gravitons (RSG*).
- Reference in back-up.

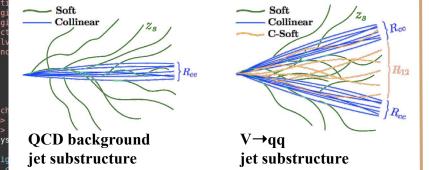
```
nclude <EventLoop
```

- // put your conf: // that way they
- BTaggingSelection BTaggingEfficiency std::unique ptr<CF
- // variables that // protected from // node (done by
- /// This is the e xAOD::TEvent* m e
- PisaxAODAnalysis

Special Ingredients: $V,H \rightarrow qq$

Rule of thumb for angular separation of decay products:

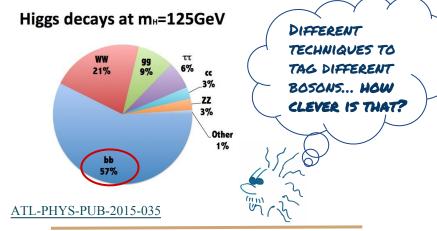
Boson P_T: Increasing transverse momentum


- **Resolved analysis:** reconstruct two small jets (anti- k_{t} R= 0.4), j:
- Merged analysis: decay products are detected as **one** object, a *large-R jet* (anti-k, R=1.0), J:

- // put your confi // that way they
- BTaggingSelection BTaggingEfficiency
- std::unique ptr<CF // variables that // protected from
- // node (done by
- /// This is the ϵ xAOD::TEvent* m e
- PisaxAODAnalysis

Boson Identification in the boosted regime

- W/Z tagger: [Mass] + [D2]
 - Based on jet substructure;


D2 cut:

two working points:

ATL-PHYS-PUB-2015-033

- $\varepsilon = 50\%$;
- $\varepsilon = 80\%$:
- e.g: $\varepsilon = 50\%$, QCD rejection factor of 40-70 per jet;

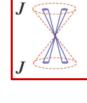
- H tagger: [Mass] + [b-tagging]
 - B-tagging on R=0.2 track based jets;

Mass cut:

- Previous: use only calo information;
- New: combination of calo & track information:
 - by now used only VH->qqbb;
- W, Z & H mass cuts are not exclusive;

JETM-2017-002

clude <EventLoop clude <EventLoop clude <EventLoop clude <EventLoop Infrastructure i clude "xAODCore, clude "xAODRoot, clude "xAODEvent


VV searches in fully hadronic final state (15.5 fb $^{-1}$)

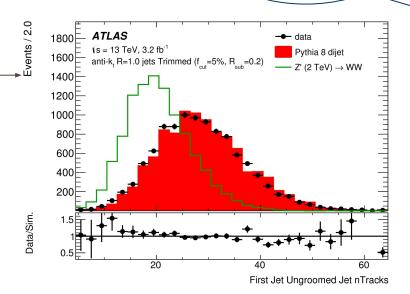
ATLAS-CONF-2016-055

Managad vanimas andru

Merged regime only: V→qq identified as 1 large-R jet:

- P_T> 450 and 200 GeV;
- W/Z boson tagged:

CUTS TO REDUCE GCD
BACKGROUND;
- BACKGROUND WITH
DATA-DRIVEN
TECHNIQUES


- ADDITIONAL

Need for additional QCD rejection;

- Single jet:
 - Number of tracks ghost-associated to the jet: N_{trk}<30;
- Topology selection:
 - \circ $|\Delta y_{.I.I}| < 1.2;$
 - \circ $(P_{T,1}^{-35}-P_{T,2})/(P_{T,1}+P_{T,2})<0.15$

Main background QCD:

- Data-driven estimation;
- Double polimomial fit to data:
- Validated in jet mass sidebands.

// put your confi

// that way they

BTaggingSelection

BTaggingEfficiency std::unique ptr<CF

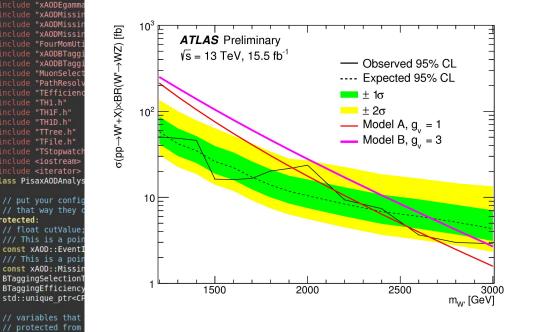
// variables that

// protected from // node (done by

/// This is the e

xAOD::TEvent* m e

include <EventLoop nclude <EventLoop nclude <EventLoop


include "TH1F.h"

include "TFile.h"

include <iostream>

// put your confi // that way they rotected: // float cutValue /// This is a poi

VV searches in fully hadronic final state (15.5 fb⁻¹)

The most extreme p_0 : 1.9 σ : HVT W'→W Z hypothesis, m_{W} , 1.9TeV.

95% CL exclusion	HVT W' $g_{V}=1 (g_{V}=3)$ $M_{W'}$ [TEV]	HVT Z' g _V =1 (g _V =3) M _W , [GEV]	RSG*: M _{RSG*} [GEV]
llqq	1.2-1.9 (1.2-3.0)	1.2-1.8 (1.2-1.9)	tested: not sensitive enough for exclusion

Sensitivity mainly limited by high P_T jets systematics.

// variables that // protected from // node (done by /// This is the e include <EventLoop

ATLAS-CONF-2016-049

HH searches in fully hadronic final state (13.3 fb⁻¹)

Merged regime:

H→bb identified as 1 large-R jets:

Resolved regime ($300 < M_v < 1200 \text{ GeV}$):

H→bb identified as 2 small jets:

jets coupled minimizing distance w.r.t. expected H mass in M_{ii}¹-M_{ii}² plane;

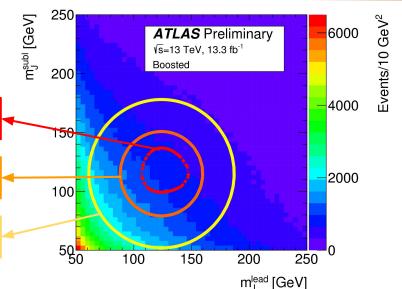
Signal Region

Control Region

Sideband Region

Categorized on number of B-tags:

2, 3, 4-btag categories;


MULTI-JET IS NOT WELL MODELED SO WE USE DATA-DRIVEN TECHNIQUES

Main Backgrounds:

- QCD multijet ($\sim 85\%$);
 - Shape: Control region with exactly 0 b-tags;
- $tt (\sim 15\%);$
- Z + jets (< 1%);

Background normalization:

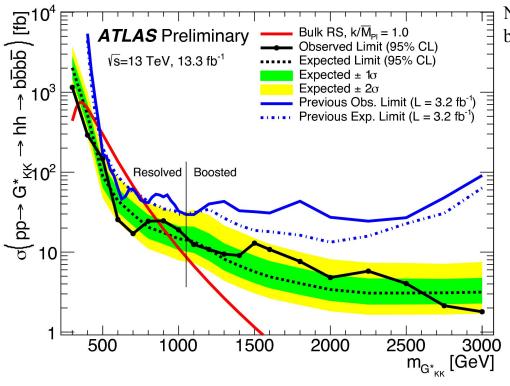
extracted with a fit to the jet mass in sideband region;

// protected from // node (done by /// This is the e xAOD::TEvent* m e

BTaggingSelection BTaggingEfficiency

std::unique ptr<CF

nclude "TStopwatc


// put your conf: // that way they

PisaxAODAnalysis

12

HH searches in fully hadronic final state (13.3 fb⁻¹)

ATLAS-CONF-2016-049

significant excess with respect to background only hypothesis is found.

non-resonant production (resolved analysis), the upper limit is 330 fb (at 95% CL): 29 times the Standard Model prediction 11.3^{+0.9}_{-1.0} fb.

95% CL exclusion	RS G* M _{G*} [GEV]
observed	360-860
expected	380-910

/// This is the e xAOD::TEvent* m ev

// protected from

// node (done by

include "TStopwatch

include <iostream> lass PisaxAODAnalys // put your confi // that way they rotected: // float cutValue

const xAOD::Event const xAOD::Missi BTaggingSelection BTaggingEfficiency std::unique ptr<CF // variables that

nclude <EventLoop

// this is a stan PisaxAODAnalysis

nclude <EventLoop, nclude <EventLoop, nclude <EventLoop, nclude <EventLoop, Infrastructure i nclude "xAODCore/: nclude "xAODRootA nclude "xAODRootA nclude "xAODRootA nclude "xAODEvent nclude "xAODTruth nclude "xAODEgamm nclude "xAODEgamm nclude "xAODEgamm nclude "xAODEgamm nclude "xAODEgamm nclude "xAODEgamm

VH searches in fully hadronic final state (36.1 fb $^{-1}$)

ATLAS-CONF-2017-018

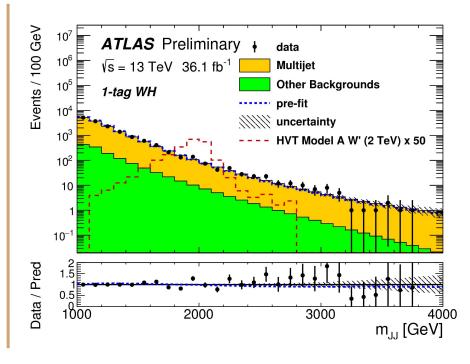
Merged regime only:

Uses combined mass algorithm for boson tagging. V→qq (H→bb) identified as 1 large-R jet:

• Highest mass jet: H tagged;

• Second highest mass jet: W/Z boson tagged;

Main background QCD:


- Data-driven estimation:
 - o 0 b-tag sample;
 - reweighted to account for kinematic differences;
- Normalization using H-jet sideband.

Other background sources from MC:

• t1

V+jets;

/// This is the e
xAOD::TEvent* m_e
// this is a stan
PisaxAODAnalysis

// put your confi

// that way they otected: // float cutValue

BTaggingSelection BTaggingEfficiency

std::unique ptr<CF

// variables that // protected from

// node (done by

nclude <EventLoop

nclude "xAODBTagg

nclude "TStopwato include <iostream lass PisaxAODAnaly

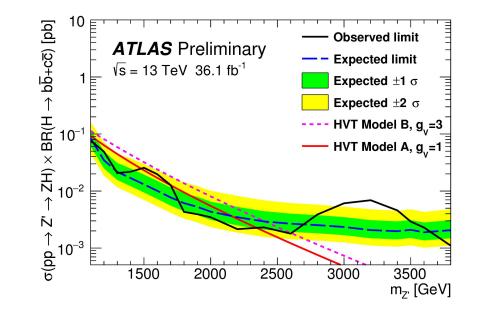
// put your confi // that way they

// float cutValue

const xAOD::Event const xAOD::Missin

BTaggingSelection BTaggingEfficiency

std::unique ptr<CF


VH searches in fully hadronic final state (36.1 fb $^{-1}$)

ATLAS-CONF-2017-018

Largest excess is observed in the WH channel:

- M_{ZH}~3.0 TeV;
- local (global) significance: 3.3σ (2.2 σ).

95% CL exclusion	M _{WH} [GeV]	M _{ZH} [GeV]
HVT Model A (g _V =1)	1100-2400	1100-1480; 1700-2350
HVT Model B (g _V =3)	1100-2500	1100-2600

// variables that // protected from // node (done by

/// This is the e xAOD::TEvent* m ev

// this is a stan PisaxAODAnalysis

nclude <EventLoop nclude <EventLoop

nclude "xAODBTagg

nclude "TH1F.h"

nclude "TStopwato include <iostream

lass PisaxAODAnaly

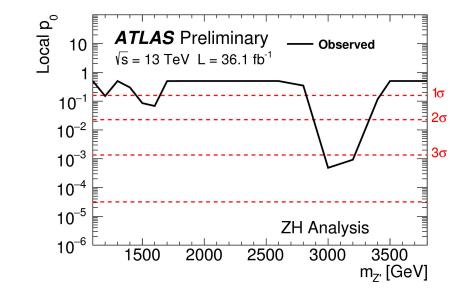
// put your confi // that way they rotected:

// float cutValue

const xAOD::Event

const xAOD::Missin BTaggingSelection

BTaggingEfficiency std::unique ptr<CF // variables that


VH searches in fully hadronic final state:

ATLAS-CONF-2017-018

Largest excess is observed in the WH channel:

- $M_{ZH}\sim 3.0 \text{ TeV};$
- local (global) significance: 3.3σ (2.2 σ).

95% CL exclusion	M _{WH} [GeV]	M _{ZH} [GeV]
HVT Model A (g _V =1)	1100-2400	1100-1480;1 700-2350
HVT Model B (g _V =3)	1100-2500	1100-2600

// protected from // node (done by /// This is the e xAOD::TEvent* m ev

// this is a stan PisaxAODAnalysis

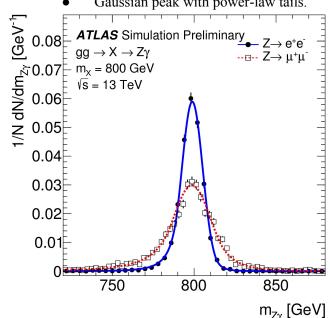
Searches in the $Z_{oldsymbol{Y}}$ channel ATLAS-CONF-2016-044

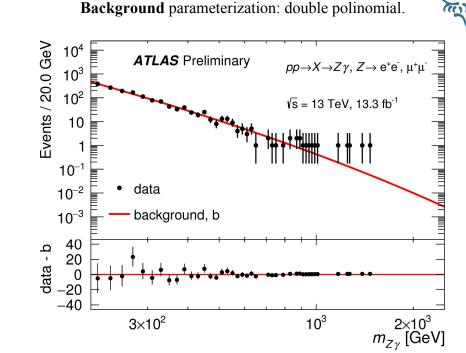
 $e^+e^-\gamma$:

include <EventLoop

nclude <EventLoop

- $\sigma(M_v) = 2 \text{ GeV for } M_v = 200 \text{ GeV } (1\%);$
- $\sigma(M_x) = 15 \text{ GeV for } M_x = 2.5 \text{TeV } (0.6\%).$
 - $Z \rightarrow \ell^+ \ell^-$: $m_{\ell\ell} \in \{m_z \pm 15 \text{ GeV}\};$


μ⁺μ⁻ γ:


- $\sigma(M_x) = 2 \text{ GeV for } M_x = 200 \text{ GeV } (1\%);$
- $\sigma(M_X) = 35 \text{ GeV for } M_X = 2.5 \text{ TeV } (1.4\%).$

Keep Z candidate with highest P_T.

Signal parameterization: double sided Crystal Ball:

Gaussian peak with power-law tails.

PisaxAODAnalysis

// put your confi // that way they rotected:

BTaggingSelection

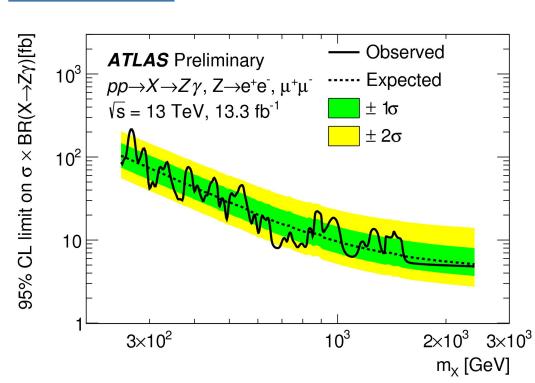
BTaggingEfficiency std::unique ptr<CF

// variables that // protected from

// node (done by /// This is the ϵ xAOD::TEvent* m e

2 FINAL STATES:

-DIFFERENT MASS RESOLUTION AND


SYSTEMATICS.

-ENHANCE SENSITIVITY:

include <EventLoop include <EventLoop include <EventLoop include <EventLoop include <EventLoop / Infrastructure i include "xAODCore/ include "xAODRootA include "xAODRootA include "xAODRootA include "xAODEvent include <AODTruth include "xAODEgamm include "xAODHossi include "xAODMissi include "xAODMissi include "xAODMissi include "xAODMissi

Searches in Z_{γ} channel

ATLAS-CONF-2016-044

No significant excess found:

• largest deviation: $M_X \sim 268 \text{ GeV}$ local significance of 2.2σ

Model independent 95% CL limit on σ x BR₂..:

- observed:
 - \circ 215 fb for $M_X = 270 \text{ GeV}$;
 - \circ 5 fb for $M_X = 2.4$ TeV.
- expected:
 - \circ 103 fb for M_x = 250 GeV;
 - \circ 5 fb for $M_X = 2.4$ TeV.

// node (done by t **blic:** /// This is the ex xAOD::TEvent* m_ex

// put your confi // that way they

// float cutValue

BTaggingSelection BTaggingEfficiency std::unique ptr<CF

// variables that // protected from

rotected:

clude <EventLoo; clude <EventLoo; clude <EventLoo; clude <EventLoo; Infrastructure clude "xAODCore; clude "xAODRoot. clude "xAODRoot. clude "xAODRoot. clude "xAODTrut! clude <xAODTrut!

Searches in the $\gamma\gamma$ channel (15.4 fb⁻¹)

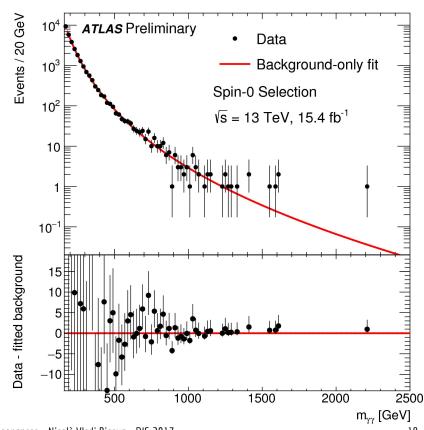
ATLAS-CONF-2016-059

Spin-0 selection:

• 2 High E_T isolated photons ($E_T > 0.4$ (0.3) m_{yy});

Signal parameterization:

- Double sided Crystal Ball function:
 - Gaussian function with power-law tails on both sides.


Background parameterization:

$$f_{(k)}(x;b,\{a_k\}) = N(1-x^{1/3})^b x^{\sum_{j=0}^k a_j(\log x)^j}$$

- $x=M_{yy}/\sqrt{s}$;
- a_{κ} : free parameters
- N: normalization

-This is the spin 6
Analysis.
-Both Background
And Signal are
Parametrized

// this is a stand
PisaxAODAnalysis

// put your confi // that way they

BTaggingSelection

BTaggingEfficienc std::unique ptr<Cl

// variables tha

// protected from // node (done by

/// This is the ϵ

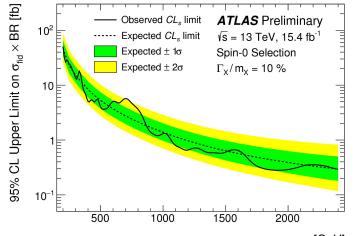
xAOD::TEvent* m e

ATLAS Searches for VH, HH, VV, V+γ/γγ Resonances - Nicolò Vladi Biesuz - DIS 2017

Searches in the $\gamma\gamma$ channel (15.4 fb⁻¹)

ATLAS-CONF-2016-059

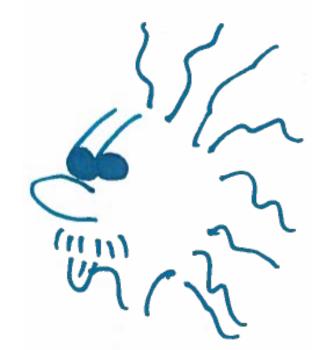
/// This is the e


xAOD::TEvent* m ev

PisaxAODAnalysis

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 15.4 \text{ fb}^{-1}$ Spin-0 Selection

- Local significance is given as function of m_X and Γ_X ;
 - 2015 data: reanalyzed with improved γ reconstruction;
 - Largest excess: $m_X = 730 \text{ GeV}$, 3.4 σ local, width 8%;
 - Largest excess (2015+2016 dataset):
 - \circ m_X = 1600 GeV, 2.4 σ local, narrow width;
 - In 700–800 GeV mass range:
 - $om_X = 710 \text{ GeV}, 2.3 \text{ σ local, relative width } 10\%;$
 - Compatibility: 2015 2016: 2.7σ @ 730 GeV.


m_x [GeV]

// put your conf: // that way they BTaggingSelection BTaggingEfficienc std::unique ptr<CF // variables that // protected from // node (done by /// This is the e xAOD::TEvent* m e

PisaxAODAnalysis

Conclusion

- Results with 2015+2016 dataset have been presented;
- High mass tensions are present;
- More results on diboson resonance searches with 2016 full dataset will arrive in the coming months. Stay tuned!
- Can't wait for 100 fb⁻¹ dataset!

THANK YOU!

```
/ Infrastructure i
include "xAODRootA
include "xAODRootA
include "xAODRootA
include "xAODEvent
include "xAODEgamm
include "FourMomUt
include "xAODBTagg
include "xAODBTagg
include "MuonSelect
include "PathResol
include "TH1.h"
include "TFile.h"
include "TStopwatch
lass PisaxAODAnalys
// put your confi
rotected:
/// This is a poin
const xAOD::Eventl
const xAOD::Missin
BTaggingSelection
BTaggingEfficiency
std::unique ptr<CF
// protected from
ıblic:
/// This is the ex
xAOD::TEvent* m ev
// this is a stand
PisaxAODAnalysis
```

BaCk-Up

include <EventLoop/ nclude <EventLoop // put your confi // that way they rotected: // float cutValue const xAOD::Event BTaggingSelection BTaggingEfficiency std::unique ptr<CF // variables that // protected from // node (done by /// This is the e xAOD::TEvent* m ev

PisaxAODAnalysis

References

- o VV→qqqq: [ATLAS-CONF-2016-055], Search for resonances with boson-tagged jets in 15.5 fb-1 of *pp* collisions at s√=13 TeV collected with the ATLAS detector, ATLAS collaboration, 08 Aug 2016. mult. p., 38th International Conference on High Energy Physics, Chicago, IL, USA, 03 10 Aug 2016;
- WV \rightarrow ℓvqq : [ATLAS-CONF-2016-062], Search for diboson resonance production in the ℓvqq final state using pp collisions at $s\sqrt{=13}$ TeV with the ATLAS detector at the LHC, ATLAS collaboration, 08 Aug 2016. mult. p.;
- o ZV→ℓℓqq, vvqq: [ATLAS-CONF-2016-082], Searches for heavy ZZ and ZW resonances in the llqq and vvqq final states in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector, ATLAS collaboration, 08 Aug 2016. mult. p., 38th International Conference on High Energy Physics, Chicago, IL, USA, 03 10 Aug 2016;
- WW→ℓνℓν: [ATLAS-CONF-2016-074], Search for a high-mass Higgs boson decaying to a pair of *W* bosons in *pp* collisions at s√=13 TeV with the ATLAS detector, ATLAS collaboration, 08 Aug 2016. mult. p., 38th International Conference on High Energy Physics, Chicago, IL, USA, 03 10 Aug 2016;
- VH \rightarrow qqbb: [ATLAS-CONF-2017-018], Search for Heavy Resonances Decaying to a W or Z Boson and a Higgs Boson in the qq^- (')bb Final State in pp Collisions at \sqrt{s} =13 TeV with the ATLAS Detector, ATLAS collaboration, 22 Mar. 2017. mult. p.;
- VH→ ℓvbb , $\ell \ell bb$, vvbb: [arXiv:1607.05621], Search for new resonances decaying to a W or Z boson and a Higgs boson in the $\ell + \ell bb^-$, ℓvbb^- , and vv^-bb^- channels with pp collisions at $s\sqrt{=13}$ ~TeV with the ATLAS detector, ATLAS collaboration,, 10 February 2017, Pages 32–52, Physics Letters B Volume 765;

nclude "TH1F.h" include "TStopwatch include <iostream> lass PisaxAODAnaly // put your confi // that way they rotected: // float cutValue const xAOD::Event const xAOD::Missin BTaggingSelection BTaggingEfficiency

References

- HH→bbbb: [ATLAS-CONF-2016-049], Search for pair production of Higgs bosons in the bb bb final state using proton-proton collisions at s√=13 TeV with the ATLAS detector, ATLAS collaboration, 08 Aug 2016. 32 p., 38th International Conference on High Energy Physics, Chicago, IL, USA, 03 10 Aug 2016;
- HH→bbγγ: [ATLAS-CONF-2016-004], Search for Higgs boson pair production in the bb γγ final state using pp collision data at √s=13 TeV with the ATLAS detector, ATLAS collaboration, 14 Mar 2016. 20 p., 50th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 14 21 Mar 2015;
- HH→γγWW*(→lvjj): [ATLAS-CONF-2016-071], Search for Higgs boson pair production in the final state of γγWW*(→lvjj) using 13.3 fb-1 of pp collision data recorded at √s= 13 TeV with the ATLAS detector, ATLAS collaboration, 08 Aug 2016. mult. p.;
- $Z\gamma \rightarrow \ell\ell\gamma$: [ATL-COM-PHYS-2016-1807], Searches for the Standard Model Higgs boson and new high-mass resonances decaying to a photon and a Z boson in pp collisions at $s\sqrt{=13}$ TeV with the ATLAS detector, ATLAS collaboration, 21 Dec 2016. mult. p;
- $\gamma\gamma$: [ATLAS-CONF-2016-059], Search for scalar diphoton resonances with 15.4 fb-1 of data collected at \sqrt{s} =13 TeV in 2015 and 2016 with the ATLAS detector, ATLAS collaboration, 08 Aug 2016. mult. p.;

std::unique ptr<CF

// protected from
// node (done by 1
iblic:
/// This is the ev
xAOD::TEvent* m ev

```
include "PathResol
include "TEfficien
include "TH1F.h"
include "TTree.h"
include "TFile.h"
include "TStopwatch
include <iostream>
lass PisaxAODAnalys
```

References

Theoretical models:

- Anatomy of a composite Higgs model, Michael J. Dugan, Howard Georgi, David B. Kaplan, Nuclear Physics B, Volume 254, 1985, Pages 299-326, http://www.sciencedirect.com/science/article/pii/0550321385902214.
- Heavy Vector Triplets: Bridging Theory and Data, Pappadopulo, Duccio and Thamm, Andrea and Torre, Riccardo and Wulzer, Andrea. JHEP, 09, 2014, 060, 10.1007/JHEP09(2014)060, DOI 1402.4431 https://arxiv.org/abs/1402.4431.
- A Large Mass Hierarchy from a Small Extra Dimension, Randall, Lisa and Sundrum, Raman. Phys. Rev. Lett., 83, 1999, 3370-3373, 10.1103/PhysRevLett.83.3370", arXiv[hep-ph] 9905221, https://arxiv.org/abs/hep-ph/9905221.

// put your confi

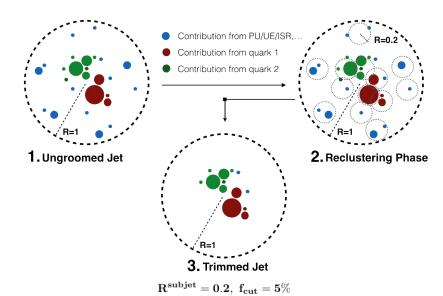
const xAOD::Event

const xAOD::Missin BTaggingSelection BTaggingEfficiency std::unique ptr<CF // variables that

// that way they rotected: // float cutValue /// This is a poin

/// This is the e xAOD::TEvent* m ev

```
include <EventLoop
include <EventLoop
nclude <EventLoop
nclude "TH1F.h"
include "TFile.h"
include "TStopwatc
lass PisaxAODAnaly
// put your confi
// that way they
rotected:
// float cutValue
/// This is a poi
const xAOD::Event
/// This is a poi
const xAOD::Missi
BTaggingSelection
BTaggingEfficiency
std::unique ptr<CF
// variables that
// protected from
// node (done by
/// This is the e
xAOD::TEvent* m ev
```


// this is a stan

PisaxAODAnalysis

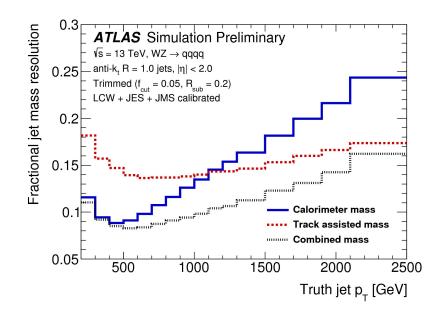
Trimming:

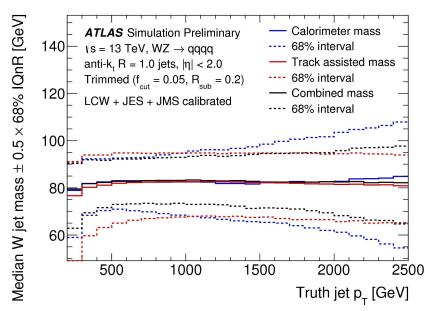
Grooming for pile-up suppression;

- Example: **Trimming** (R_{sub} = 0.2, f_{cut} = 5%); Build Kt jets with R=0.2 using Anti-Kt 1.0 jet clusters;
- Drop sub-jets carrying less than 5% of large-R jet total momentum;

include <EventLoop nclude <EventLoop nclude <EventLoop include "xAODRootA include "xAODRootA include "xAODRootA include "xAODEven" include <xAODTruth include "xAODEgamr include "xAODMissi include "FourMomUt include "xAODBTagg include "xAODBTagg include "MuonSelec include "PathResol include "TEfficien include "TH1.h" include "TH1F.h" include "TH1D.h" include "TTree.h" include "TFile.h" include "TStopwatch lass PisaxAODAnaly

// put your confi // that way they rotected:


otected:
// float cutValue;
/// This is a poir
const xAOD::Event!
/// This is a poir
const xAOD: Missir
BTaggingSelection!
BTaggingEfficiency
std::unique_ptr<C0


// variables that
// protected from
// node (done by
ublic:

/// This is the ex xAOD::TEvent* m ex

// this is a stand PisaxAODAnalysis

Mass definition:

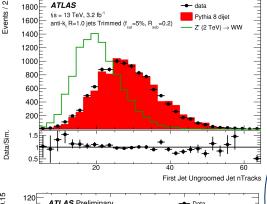
nclude <EventLoop

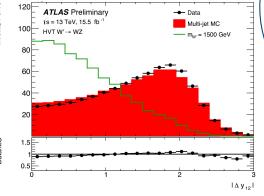
ATLAS-CONF-2016-055

VV searches in fully hadronic final state (15.5 fb $^{-1}$)

Merged regime only: V→qq identified as 1 large-R jet:

- P_{τ} > 450 and 200 GeV;
- W/Z boson tagged:
 - D2 cut:
 - 50% efficiency WP;
 - QCD rejection factor of 40-70 per jet;
 - $M_{w,7}$ mass cut:
 - 68% efficiency WP;
 - W and Z mass window overlap;
- Additional QCD rejection by requiring: N_{trk}>30;
 - N_{trk}: number of tracks ghost-associated to the jet.


Topology selection:


- $|\Delta y_{\perp i}| < 1.2;$ —
- $(P_{T_1}^{\circ \circ} P_{T_2})/(P_{T_1} + P_{T_2}) < 0.15$

Main background QCD:

- Data-driven estimation:
- Functional form fit to data:

$$\frac{dn}{dx} = p_1 (1 - x)^{p_2 + \xi p_3} x^{p_3} x = m_{JJ} / \sqrt{s}$$

ATLAS Searches for VH, HH, VV, V+y/yy Resonances - Nicolò Vladi Biesuz - DIS 2017

PisaxAODAnalysis

nclude "TStopwatc

include <iostream>

ass PisaxAODAnaly

// put your confi // that way they

// float cutValue

const xAOD::Event /// This is a poi

const xAOD::Missi BTaggingSelection BTaggingEfficiency

std::unique ptr<CF

// variables that // protected from

// node (done by

/// This is the e xAOD::TEvent* m e

rotected:

HH searches in fully hadronic final state:

Merged regime:

H \rightarrow bb identified as 1 large-R jets: $P_T > 450$ (250) GeV;

Resolved regime ($300 < M_x < 1200 \text{ GeV}$):

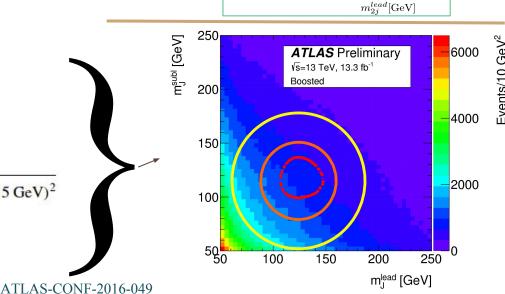
H→bb identified as 2 small jets:

- jets coupled minimizing D_{HH}
- cut on ΔR_{ii} and $\Delta \eta_{ii}$

Signal region definition:

$$\bullet \qquad X_{hh} = \sqrt{\left(\frac{m_{J}^{\text{lead}} - 124 \text{ GeV}}{\sigma \left(m_{J}^{\text{lead}}\right)}\right)^{2} + \left(\frac{m_{J}^{\text{subl}} - 115 \text{ GeV}}{\sigma \left(m_{J}^{\text{subl}}\right)}\right)^{2}}$$

 $X_{hh} < 1.6$;


Control region definition (top):

•
$$R_{hh} = \sqrt{(m(J_1) - 124 \text{ GeV})^2 + (m(J_2) - 115 \text{ GeV})^2}$$

 $X_{hh} > 1.6$ & $R_{hh} < 35.8$ GeV

Sideband region:

 $X_{hh} > 1.6$ & $35.8 < R_{hh} < 63 \text{ GeV}$

 $(m_{2i}^{\prime lead}, m_{2i}^{\prime subl})$

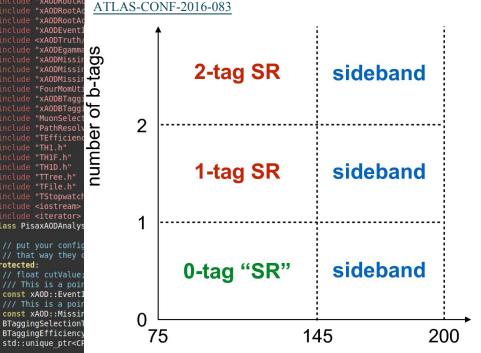
 $(120 \, \text{GeV}, 115 \, \text{GeV})$

// that way they // float cutValue

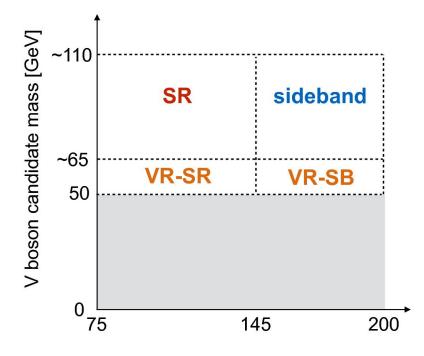
include <iostream

lass PisaxAODAnaly

// put your confi


const xAOD::Missi BTaggingSelection BTaggingEfficiency std::unique ptr<CF

// protected from // node (done by /// This is the e


xAOD::TEvent* m e

PisaxAODAnalysis

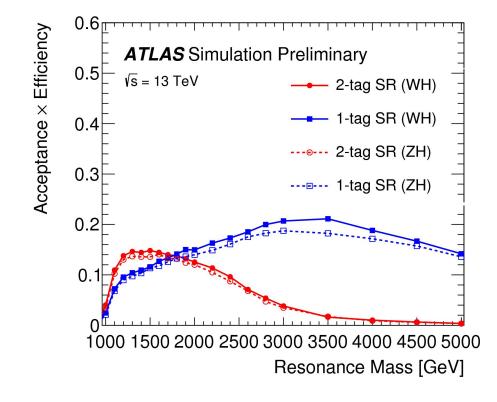
VH searches in fully hadronic final state:

Higgs boson candidate mass [GeV]

// variables that // protected from

// node (done by /// This is the e

rotected:


nclude <EventLoc nclude <EventLoc nclude <EventLoc nclude <EventLoc Infrastructure nclude "XAODRoot nclude "XAODRoot nclude "XAODRoot nclude "XAODEvon nclude "XAODEvon nclude "XAODEvon nclude "XAODEssa nclude "XAODMiss nclude "XAODMiss

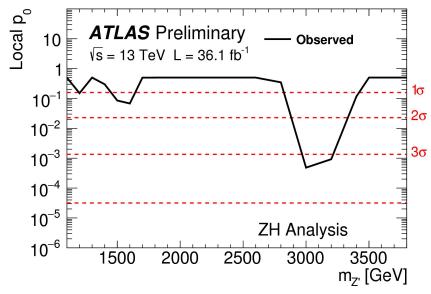
lass PisaxAODAnaly

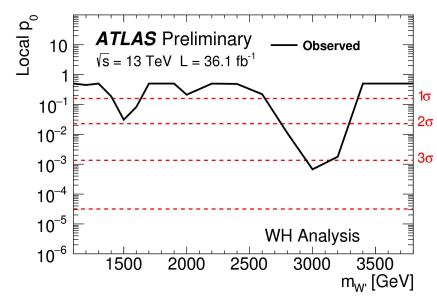
// put your config
// that way they or
rotected:
// float cutValue;
// This is a poin
const xAOD::Eventl
/// This is a poin
const xAOD::Missin
BTaggingSelection
BTaggingEfficiency
std::unique ptr

VH searches in fully hadronic final state:

ATLAS-CONF-2016-083

// variables that // protected from // node (done by


/// This is the e


include <EventLoop nclude <EventLoop nclude <EventLoop

VH searches in fully hadronic final state:

ATLAS-CONF-2016-083

/// This is the e xAOD::TEvent* m ev

include <EventLoop/ Include <EventLoop/ Include <EventLoop/ Include <EventLoop/ Infrastructure in include "xAODRoore/S' include "xAODRootActinclude "xAODRootActinclude "xAODRootActinclude "xAODEventI Include "xAODEyamma

include "xAODMissi include "xAODMissi include "FourMomUt include "xAODBTagg

include "PathResolvinclude "TEfficienc include "TH1.h" include "TH1.h" include "TH1D.h" include "TTree.h" include "TFile.h" include "TStopwatch

// put your config // put your config // that way they cootected: // float cutValue; /// This is a poir const xAOD::Eventl // This is a poir const xAOD::Missir BTaggingSelection BTaggingEfficiency std::unique ptr<CF

VH searches in fully hadronic final state:

ATLAS-CONF-2016-083

Selection	Description
Lepton veto	Remove events with leptons
> 1 large- R jets	$p_{\rm T} > 250 { m GeV}, \eta < 2.0$
Leading large- R jet p_{T}	$>450~{ m GeV}$
V/H assignment	larger mass jet is H -jet, smaller mass jet is V -jet
Rapidity difference	$ \Delta y_{12} < 1.6$
$E_{ m T}^{ m miss}$ veto	Remove events with $E_{\mathrm{T}}^{\mathrm{miss}} > 150 \text{ GeV}$ and $\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, H - \mathrm{jet}) > 120 \text{ degrees}$
Higgs tagging	mass window, track-jet b-tagging
W/Z-tagging	mass window + $D_2^{\beta=1}$ selection
Dijet mass	$m_{ m JJ} > 1 \ { m TeV}$

// protected from
// node (done by t
//Libia:
/// This is the ev
xAOD::TEvent* m ev

include <EventLoop include "xAODRootA include "PathResol include "TH1F.h" include "TTree.h" include "TFile.h" include "TStopwatch lass PisaxAODAnaly // put your confi // that way they rotected: // float cutValue /// This is a poi const xAOD::Event /// This is a poin const xAOD::Missin BTaggingSelection BTaggingEfficiency std::unique ptr<CF

// protected from
// node (done by t
//Libia:
/// This is the ev
xAOD::TEvent* m ev

// this is a stan

PisaxAODAnalysis

VH searches in fully hadronic final state:

ATLAS-CONF-2016-083

Ÿ					
$\frac{2\text{-tag}}{\text{Sample}}$	Sideband Region	Validation (Signal Reg	gion-Like)	Validation (Sideband Re	egion-Like)
		No $D_2^{\beta=1}$	With $D_2^{\beta=1}$	No $D_2^{\beta=1}$	With $D_2^{\beta=1}$
Multijet	1410 ± 10	14700 ± 20	875 ± 5	7150 ± 10	460 ± 5
t ar t	220 ± 10	115 ± 10	12 ± 3	250 ± 15	26 ± 4
V+jets	35 ± 15	250 ± 30	14 ± 6	30 ± 10	3 ± 3
Total	1670 ± 20	14050 ± 35	900 ± 8	7430 ± 20	485 ± 6
Data	1667	15013	934	7200	426
1-tag	Sideband Region	Validation	Region	Validation	Region
Sample		(Signal Reg		(Sideband Re	
		No $D_2^{\beta=1}$	With $D_2^{\beta=1}$	No $D_2^{\beta=1}$	With $D_2^{\beta=1}$
Multijet	12350 ± 50	138500 ± 160	8820 ± 40	62600 ± 100	3970 ± 30
$t \overline{t}$	2200 ± 30	1030 ± 30	$115 \ \pm 7$	1700 ± 35	210 ± 10
V+jets	300 ± 40	1480 ± 90	$120\ \pm 25$	420 ± 50	35 ± 13
Total	15000 ± 75	140900 ± 190	9050 ± 50	64700 ± 120	4200 ± 30
Data	14973	135131	8685	66896	4418

include <EventLoop,
include <EventLoop,
include <EventLoop,
include <EventLoop,
include <EventLoop,
/ Infrastructure ir
include "xAODCore/s
include "xAODRootAd
include "xAODRootAd
include "xAODEventLinclude "xAODEventLincl

include "xAODBTagg

include "PathResol

include "TH1F.h" include "TH1D.h" include "TTree.h" include "TFile.h" include "TStopwatch

// put your config // put your config // that way they cootected: // float cutValue; /// This is a poir const xAOD::Eventl // This is a poir const xAOD::Missir BTaggingSelection BTaggingEfficiency std::unique ptr<CF

VH searches in fully hadronic final state:

ATLAS-CONF-2016-083

	ZH 2-tag	ZH 1-tag
Multijet	$1440\ \pm 60$	13770 ± 310
Other Backgrounds	135 ± 45	1350 ± 270
Total Backgrounds	1575 ± 40	15120 ± 130
Data	1574	15112
$Model\ B,\ M=2\ TeV$	25 ± 7	29 ± 10
	WH 2-tag	WH 1-tag
Multijet	$\frac{WH \text{ 2-tag}}{1525 \pm 65}$	$WH \ 1-tag$ $13900 \ \pm 290$
Multijet Other Backgrounds		
	1525 ± 65	13900 ± 290
Other Backgrounds	1525 ± 65 110 ± 45	$ \begin{array}{r} 13900 \pm 290 \\ 1310 \pm 260 \end{array} $
Other Backgrounds Total Backgrounds	1525 ± 65 110 ± 45 1635 ± 40	$ \begin{array}{r} 13900 \pm 290 \\ 1310 \pm 260 \\ \hline 15220 \pm 120 \end{array} $

// protected from
// node (done by t
//Libia:
/// This is the ev
xAOD::TEvent* m ev

Searches in the $Z_{\mathbf{Y}}$ channel

ATLAS-CONF-2016-044

 $e^+e^-\gamma$:

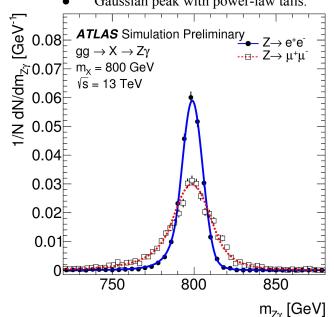
include <EventLoop

nclude <EventLoop

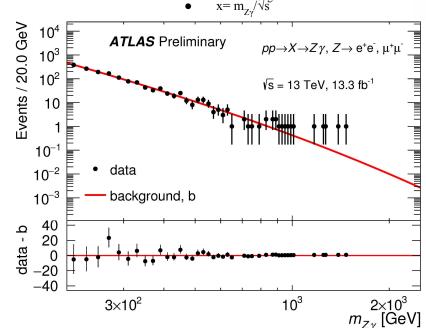
•
$$\sigma(M_x) = 2 \text{ GeV for } M_x = 200 \text{ GeV } (1\%);$$

•
$$\sigma(M_X) = 15 \text{ GeV for } M_X = 2.5 \text{TeV } (0.6\%).$$

 $Z \rightarrow \ell^+ \ell^-$: $m_{\rho\rho} \in \{m_7 \pm 15 \text{ GeV}\};$


μ⁺μ⁻ γ:

- $\sigma(M_x) = 2 \text{ GeV for } M_x = 200 \text{ GeV } (1\%);$
- $\sigma(M_X) = 35 \text{ GeV for } M_X = 2.5 \text{ TeV } (1.4\%).$


Keep Z candidate with highest P_T.

Signal parameterization: double sided Crystal Ball:

Gaussian peak with power-law tails.

Background parameterization: $f_{bkg}(x) = N(1-x_k)^{p_1}x^{p_2}$;

PisaxAODAnalysis

// put your confi // that way they rotected:

BTaggingSelection

BTaggingEfficiency std::unique ptr<CF

// variables that // protected from

// node (done by /// This is the e xAOD::TEvent* m e

36

2 FINAL STATES:

-DIFFERENT MASS RESOLUTION AND

SYSTEMATICS.

-ENHANCE SENSITIVITY:

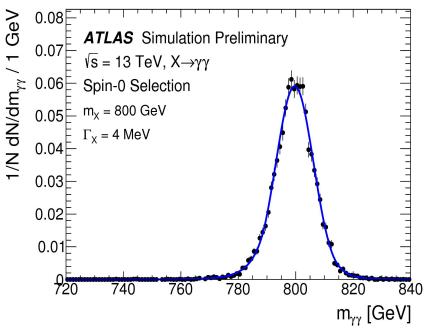
iclude <EventLoop, clude <EventLoop, clude <EventLoop, clude <EventLoop, clude <EventLoop, Infrastructure in clude "xAODRootA clude "xAODRootA clude "xAODRootA clude "xAODEvent clude <xAODTruth clude "xAODEgamm clude "xAODEgamm clude "xAODEgamm clude "xAODEgamm clude "xAODEgamm clude "xAODEgamm

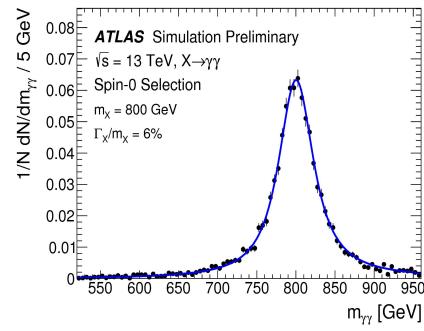
include "TStopwatc

lass PisaxAODA<u>nalys</u>

// put your confi

// that way they
rotected:
// float cutValue


const xAOD::Missir
BTaggingSelectionT
BTaggingEfficiency
std::unique ptr<CF</pre>


// variables that // protected from

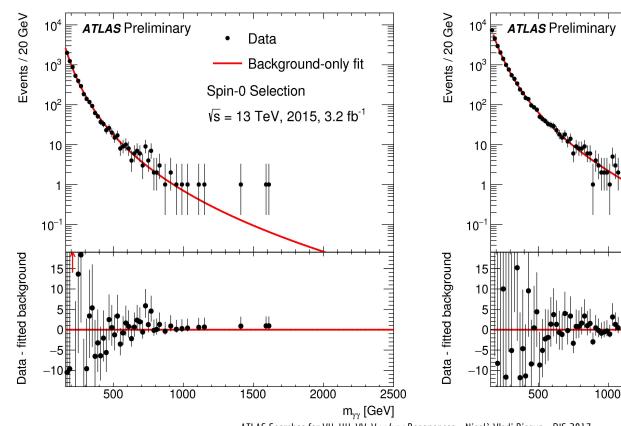
// node (done by **blic:** /// This is the e xAOD::TEvent* m e

Searches of resonances in the $\gamma\gamma$ channel

ATLAS-CONF-2016-059

nclude <EventLoop, nclude <EventLoop, nclude <EventLoop, nclude <EventLoop, nclude <EventLoop, nclude "xAODRoot nclude "xAODRootA nclude "xAODRootA nclude "xAODRootA nclude "xAODEventI nclude "xAODEyenni nclude "xAODEyenni nclude "xAODEyenni nclude "xAODEyenni nclude "xAODMissin nclude "xAODMissin nclude "xAODMissin

// put your confi // that way they **otected:** // float cutV<u>alue</u>


const xAOD::Missir
BTaggingSettionn
BTaggingSetticiency
std::unique_ptr<CV
// variables that
// protected from
// node (done by state)
blic:
/// This is the ev</pre>

xAOD::TEvent* m e

PisaxAODAnalysis

Searches of resonances in the $\gamma\gamma$ channel

ATLAS-CONF-2016-059

ATLAS Searches for VH, HH, VV, V+y/yy Resonances - Nicolò Vladi Biesuz - DIS 2017

58

2500

 $m_{\gamma\gamma}$ [GeV]

Data

Spin-0 Selection

1500

2000

Background-only fit

 \sqrt{s} = 13 TeV, 2016, 12.2 fb⁻¹