Search for direct production of charginos and neutralinos with ATLAS @ 13TeV

Nicky Santoyo Castillo

On behalf of ATLAS

04th April 2017

25th International Workshop on Deep Inelastic Scattering and Related Topics

- Motivation
- EWK Signatures in Run2
 - Final states with two hadronically decaying au (•27)
 - Final states with two and three light leptons (•2/3ℓ)
 - Final states with 4 light leptons (•40)
- Summary

Motivation

Search strategy @ 13 TeV:

→ Early data: Gluino & 1st/2nd generation squark searches have the largest potential due to enhanced cross-sections

with the current luminosity, the sensitivity is expected to exceed that of Run 1 (8 TeV)

EWK production characteristics

- Low cross sections .
- Suppressed SM backgrounds
- Naturalness suggests low mass ٠ sparticles
- Multileptonic signatures

115

EWK SUSY Searches

EWK SUSY Strategy

Signature-based analyses characterised by lepton multiplicity (L) and missing transverse energy.

The models used in the searches shown today may impose R-parity conservation (RPC) or violation (RPV),

$$R - parity = (-1)^{3(B-L)+2S}.$$
 (1)

The results presented here explore a partial $\sqrt{s} = 13$ TeV dataset.

Supersymmetric Models

Simplified Models

- one simulated process with 100% BR
- minimal particle content
- the relevant particle masses are the only free parameters

115

2τ (OS) Signal Models

ATLAS-CONF-2016-093

C1C1 & C1N2 production

Signal

- stau is the only light slepton
- at least two hadronically decaying tau leptons and missing transverse momentum

$$m_{T2}^{2}(p_{1}, p_{2}, E_{miss}^{T}) = \min\left\{ \max\left[m_{T}^{2}(p_{1}, v_{1}), m_{T}^{2}(p_{2}, v_{2})\right] \right\}$$

- dominant backgrounds: processes with at least one "fake" tau (multijets), W+jets and dibosons
- dedicated CR designed to estimate multijet background with a data-driven method , "ABCD".
- m_{T2} most powerful discriminator against top background
- using ditau + E^{miss}_T trigger

115

2τ (OS) Signal Models

ATLAS-CONF-2016-093

- masses of charginos excluded beyond 600 GeV
- vast improvement wrt 8 TeV results

$2/3\ell$ Signal Models

ATLAS-CONF-2016-096

C1C1 production

- decays via sleptons have higher BR wrt decays via bosons
- $\tilde{\chi}_1^+ \tilde{\chi}_1^- (\tilde{\chi}_1^\pm \tilde{\chi}_2^0)$ can lead to two opposite-signed (three) leptons with large E_T^{miss} in the final state

C1N2 production

Variable	$\mathrm{SR}2\ell$	
lepton	$\ell^+\ell^-$	
lepton flavour	SF	DF
central light jets	020	030
central <i>b</i> -jets	020	0_{20}
forward jets	030	030
$ m_{\ell\ell} - m_Z $ [GeV]	> 10	-
m_{T2} [GeV]	> 90, 120, 150	

- dominant Backgrounds: Dibosons: WW (2*ℓ*) and WZ (3*ℓ*)
- triggers: dileptonic triggers
- **optimisation strategy**: focus on intermediate/high mass regions
- 2ℓ channel: main kinematic discriminators variable m_{T2} requirements and jet veto

- 3 ℓ channel: main requirements on the $E_{\mathrm{T}}^{\mathrm{miss}}$ and lepton p_{T}

Variable	$SR3\ell$ -I	$\mathrm{SR}3\ell\text{-}\mathrm{H}$
lepton	$\ell^+\ell^-\ell$	
b-tagged jet	veto	
$m_{\rm T} >$	110	
$m_{\rm SFOS}$	$\notin [81.2, 101.2]$	>101.2
$p_T^{3^{rd}\ell} >$	30	80
$\hat{E}_{T}^{miss} >$	120	60

$2/3\ell$ Signal Models

ATLAS-CONF-2016-096

2ℓ

- improvement over Run1 limits for up to 200(300) GeV for massless LSP
- 3ℓ excluding masses of the $\tilde{\chi}^{\pm}_1, \tilde{\chi}^0_2$ above 1 TeV

ATLAS-CONF-2016-075

4ℓ (e, μ)

C1C1 production

Characteristics

- main backgrounds: $t\overline{t}+Z$ and events with 2 "fake" leptons, mainly $t\overline{t}$
- two SR (SRA, SRB) exploiting main discriminant variables: effective mass, $m_{\rm eff}$ and vetoing pairs with invariant mass consistent with the Z boson mass
- using leptonic triggers
- fake leptons are estimated using a data-driven technique, Fake Factor

- R-Parity violating scenario studied in Run1
- ullet \geq 4 ℓ in the final state
- clean signature, small expected SM backgrounds

EWK SUSY Searches

ATLAS-CONF-2016-075

Sample	VR	SRA	SRB
Irreducible			
ZZ	29 ± 5	0.6 ± 0.4	0.20 ± 0.19
tīZ	2.05 ± 0.24	1.43 ± 0.23	0.47 ± 0.09
Higgs	1.7 ± 1.4	0.4 ± 0.4	0.11 ± 0.11
VVZ	0.72 ± 0.14	0.31 ± 0.06	0.123 ± 0.027
Others	0.28 ± 0.07	0.32 ± 0.04	0.181 ± 0.022
1-fake ℓ reducible	1.14 ± 0.07	0.168 ± 0.018	0.069 ± 0.014
2-fake ℓ reducible	16 ± 6	0.48 ± 0.24	0.11 ± 0.05
Σ SM	51 ± 6	3.6 ± 0.6	1.26 ± 0.26
Data	53	2	0
p_0	_	0.64	0.80
S ⁹⁵ _{obs}	_	4.3	3.0
S ⁹⁵ _{exp}	_	$5.4^{+1.6}_{-1.3}$	$3.8^{+1.3}_{-0.8}$
$\langle \epsilon \sigma \rangle_{obs}^{95}$ [fb]	_	0.32	0.22
CL _b	_	0.21	0.15

- extending Run1 limit by 400 GeV in chargino masses
- currently excluding $m_{\tilde{\chi}_1^{\pm}}$ beyond 1 TeV for large LSP masses

Nicky Santoyo

us

Summary

- EWK analyses have started to produce results using Run2 data, exploring new areas of SUSY parameter space and probing heavier electroweakinos
- Work is ongoing to revisit these analyses with the full 2015+2016 data
- Already improving the Run1 limits with just over 13 fb⁻¹