

Searches for High Mass BSM Scalars in Z γ and $\gamma\gamma$ Final States

Kyungwook Nam

on behalf of the CMS Collaboration (Seoul National University)

DIS2017: 25th International Workshop on Deep Inelastic Scattering and Related Topics April 4th, 2017

Outline

- Introduction
- Summary of Previous Analyses
- $X \rightarrow Z\gamma / X \rightarrow \gamma\gamma$
 - Data and simulations
 - Event selection
 - Background Modeling
 - Signal Modeling
 - Systematics
 - Result
- Conclusion

Introduction

Many BSM theories predict additional heavy scalar bosons

- $Z\gamma / \gamma\gamma$ decay: clear experimental signature
- LHC 13 TeV operation give us a good chance to search them
 - 37.8 fb⁻¹ recorded by the CMS detector in 2016: already exceeded total Run-I statistics
- This talk covers the latest results of the following searches
 - $X \rightarrow Z(II)\gamma$ (EXO-16-034), $X \rightarrow Z(qq)\gamma$ (EXO-16-035), $X \rightarrow \gamma\gamma$ (EXO-16-027, Phys. Lett. B 767 (2017) 147)
- Analysis strategy
 - looking for an excess over SM backgrounds in the invariant mass spectrum
 - fit the data with a background model and use the signal shapes for the limits
 - benchmark scenarios: $\frac{Z(II)\gamma}{Spin}$ $\frac{Z(qq)\gamma}{0}$ $\frac{\gamma\gamma}{0,2}$ Spin 0 0 0,2 Width 0.014% 0.014%, 5.6% 0.014%, 1.4%, 5.6%

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} = 13$ TeV

Kyungwook Nam (SNU)

Summary of Previous Analyses

- Run-I (8 TeV)
 - started around SM Higgs mass
 - extended to high masses
 - X → Z(II) γ : HIG-14-003 (Phys. Lett. B 753 (2016) 341), HIG-14-031, HIG-16-014
 - $X \rightarrow Z(qq)\gamma$: EXO-16-025
 - $X \rightarrow \gamma \gamma$: HIG-14-006 (Phys. Lett. B 750 (2015) 494), HIG-14-037
- Run-II
 - higher collision energy: $8 \rightarrow 13 \text{ TeV}$
 - focus on the high mass region
 - 2015:
 - → $X \rightarrow Z(II)\gamma$: EXO-16-019, EXO-16-021 (JHEP 01 (2017) 076)
 - → $X \rightarrow Z(qq)\gamma$: EXO-16-020
 - X → γγ: EXO-15-004, EXO-16-018 (Phys. Rev. Lett. 117, 051802 (2016))

Data and Simulations

- Data
 - collected by the CMS detector during LHC 13 TeV operation in 2016 until August (12.9 fb⁻¹)
 - passing standard quality criteria for all components of the CMS detector
- Background simulations:
 - used for only background bias studies
 - $X \rightarrow Z(II)\gamma$: $Z(II)\gamma$ (aMC@NLO), Z+jets (MadGraph)
 - $X \rightarrow Z(qq)\gamma$: γ +jets (aMC@NLO), QCD multijet (PYTHIA)
 - $X \rightarrow \gamma \gamma$: $\gamma \gamma$ (Sherpa), γ +jets (aMC@NLO), QCD multijet (PYTHIA)
 - Sherpa, MadGraph, aMC@NLO:
 - ➡ interfaced with PYTHIA for parton showering and hadronization
- Signal simulations
 - generated at leading order with PYTHIA

Event Selection: $X \rightarrow Z(II)\gamma$

- Triggers
 - ee channel: the combination of double electron triggers
 - μμ channel: the combination of single muon triggers and double muon triggers
- Dilepton
 - leading p_T > 25 GeV, subleading p_T > 10 GeV, $|\eta|$ < 2.4
 - 50 < M_z < 130 GeV
- Photon
 - p_T > 40 GeV, |η| < 2.5
 - AR > 0.4 from each identified lepton
- Z(II)γ

•

- photon p_T / M_{Zγ} > 40/150
- $M_{Z_{\gamma}} > 200 \text{ GeV}$

Event Selection: $X \rightarrow Z(qq)\gamma$

- Triggers
 - the combination of single photon triggers and single jet triggers
- Photon: $p_T > 200 \text{ GeV}$, $|\eta| < 1.44$
- Wide jet: boosted qq → reconstructed as a single jet with wide cone size
 - clustered with anti-kT algorithm with a cone size of $\triangle R < 0.8$
 - $p_T > 200 \text{ GeV}, |\eta| < 2$
 - $\triangle R > 1.1$ from an identified photon
 - pruned with the Cambridge-Achen algorithm
 - **75 GeV < M**J^{pruned} **< 105 GeV**
 - split into two subjets by reversing the final iteration in the clustering
- Subjets: b-tagged / anti-b-tagged
- $M_{Z\gamma} > 600 \text{ GeV}$

Event Selection: $X \rightarrow \gamma \gamma$

- Trigger:
 - double photon trigger
- Diphoton:
 - $p_T > 75 \text{ GeV}, |\eta| < 2.5$
 - at least one photon with $|\eta| < 1.44$
 - → Two categories: **EBEB** (both $|\eta| < 1.44$) and **EBEE** (one $|\eta| < 1.44$, the other $|\eta| > 1.44$)
 - $M_{\gamma\gamma}$ > 230 GeV (EBEB) / 320 GeV (EBEE)

Background Modeling

- Parameterized by a smoothly falling function of invariant mass
 - $f(M_{Z\gamma}) = M_{Z\gamma}^{a + b \log(M_{Z\gamma})}$
- Background bias study is based on
 - $Z(II)\gamma$, $\gamma\gamma$: simulations in the signal region
 - $Z(qq)\gamma$: data and simulations in the side band (50 GeV < M_J^{pruned} < 70 GeV)
- To estimate a bias: test a pull between the background model and test models
 - generate pseudo-experiments from the fit of a test model to MC
 - fit the background model to pseudo-experiments and compute pulls
 - criterion: |median of pulls| < 0.5
 - if not, apply an extra uncertainty until the median is brought back in 0.5
 - the extra uncertainty is assigned as a systematic

Signal Modeling

- Signal shape in the invariant mass spectrum
 - Z(II)γ, γγ: Double-sided Crystal Ball
 - Z(qq)γ: Crystal Ball + Gaussian
- Shape parameters and total selection efficiencies from simulation
 - measured by the simulated sample at each mass point and interpolated through polynomial fits

Systematics

• (O: considered, X: not)

	Ζ(ΙΙ) γ	Z(qq)γ	γγ
Luminosity	\checkmark	\checkmark	\checkmark
PDF	\checkmark	\checkmark	\checkmark
Pileup		\checkmark	
Trigger	\checkmark	\checkmark	
Efficiency	\checkmark	\checkmark	\checkmark
e/γ energy scale and resolution	\checkmark	\checkmark	\checkmark
μ momentum scale and resolution	\checkmark		
Jet energy & mass scale and resolution		\checkmark	

April 4th, 2017

Kyungwook Nam (SNU)

Limits: $X \rightarrow Z(qq)\gamma$

Kyungwook Nam (SNU)

April 4th, 2017

Limits: $X \rightarrow \gamma \gamma$

Conclusion

- Searches for new heavy scalars decaying to $Z\gamma$ / $\gamma\gamma$ have been performed at CMS
 - based on part of 2016 data (12.9 fb⁻¹)
- No significant excess has been observed above the background only hypothesis so far
- All searches are working with full 2016 dataset and the updated results will be presented in near future. Stay tuned!

Systematics

• (O: considered, X: not)

	Z(II)γ	Z(qq)γ	γγ
Luminosity	6.2%	6.2%	6.2%
PDF	1%	2%	6%
Pileup		1%	
Trigger	4%	2%	
Efficiency	5%	32%	6%
e/γ energy scale and resolution	1%	1%	1%
μ momentum scale and resolution	5%		
Jet energy & mass scale and resolution		4%	