

Search for low mass BSM particles using h(125)

Chayanit Asawatangtrakuldee – DESY on behalf of the CMS Collaboration

DIS2017

University of Birmingham, UK (3-7 April 2017)

Introduction

- The discovered Higgs boson at 125 GeV play a central role in probing physics beyond the Standard Model (BSM)
- Many BSM theories predicted several BSM decay modes of h(125)

h(125) → invisible

h(125)→invisible

- Direct searches must be performed in channels where the Higgs recoils against a visible system
 - vector boson fusion (VBF)
 - associated with vector bosons (VH)
 - gluon fusion (ggH)

VBF h→invisible

- Signal characteristics : 2 jets large Δη_{jj}, M_{jj} + large missing E_T
- Dominant backgrounds from SM Z(vv)/W(lv)+jets
 - lepton control regions in data to normalize MC
- Signal extraction based on counting experiment
 - simultaneous fit in 5 control + signal regions

- Systematic uncertainties driven by JES/JER
- Limit on *o***×Br** as a function of mass
 - assuming SM Higgs cross-section

@125 GeV, Br(h→invisible) < 0.69 (0.62) obs (exp)*

* Br(h→invisible) < 0.65 (0.49) obs (exp) at 8 TeV

Z(*ll*)h→invisible

- Clean final state from leptonic Z decay
 - events with missing E_T + 2 leptons (e⁺e⁻/µ⁺µ⁻)
- Backgrounds dominated by diboson processes
 - ► ZZ(2*l*2*v*) (70%), WZ(*lvll*) (25%) from MC
- Signal extraction by fitting m_T distribution
 in 0-, 1-jet categories

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell\ell} E_{\rm T}^{\rm miss} \left[1 - \cos\Delta\phi(\ell\ell, \vec{p}_{\rm T}^{\rm miss})\right]}$$

Assuming SM Higgs cross-section @125 GeV, Br(h→invisible) < 0.86 (0.70) obs (exp)

Higgs boson mass (GeV)

V(jj)h & ggh→invisible

2.3 fb⁻¹ (13 TeV)

Data

 $Z(\rightarrow vv)$ +jets

 $W(\rightarrow \ell v)$ +jets

Dibosons

Top quark

 $Z/\gamma(\rightarrow \ell \ell)$ +jets

QCD multijet

H. B(H \rightarrow inv)=100%

1000

 E_{T}^{miss} [GeV]

- Both look for events with **Jet+missing E**_T (VBF veto)
 - "fat" jet from W/Z decays hadronically
 - "central" jet from a gluon/quark ISR
- Dominant backgrounds arise from W/Z(vv)+jets

10⁴

10-

10-2

200

400

600

800

CMS

Monoiet

CMS PAS EXO-16-037

Limits with 12.9	Expect	Observed
V(jj)h→invisible	0.72	1.17
ggh→invisible	0.85	0.48
combined	0.56	(0.44)

CMS PAS HIG-16-016

Signal extracted from fit to Missing ET spectrum

Upper limits on **oxBr/osm** for Higgs decaying invisibly @125 GeV

5 April 2017

C. Asawatangtrakuldee — DIS2017

1200

Combination h→invisible

- No significant deviations from the SM expectations are observed
- Combination of h→invisible searches performed using Run-1 dataset and 2.3 fb⁻¹
 of 13 TeV (2015) data
 - 95% CL upper limits on **oxBr** relative to SM production is estimated

Higgs-Portal Model

+ If dark matter (DM) couples to the Higgs, the following diagrams are possible

 Br(h→invisible) translated into DM-nucleon spin-independent cross section limits as a function of DM mass (if DM mass < m_h/2)*

*A. Djouadi et al, Phys. Lett. B 709 (2012)

5 April 2017

Dark Matter Interpretation

h(125) → aa

CMS PAS HIG-16-035

- ✤ Two models interpretation
 - **NMSSM** : $h \rightarrow aa \rightarrow 4\mu (2m_{\mu} \le m_a \le 2m_{\tau})$
 - **Dark SUSY** : $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 4\mu (m_h > m_{n1})$
- Mass range of m_a ∈ 0.25 to 3.55 (8.5) GeV
- Main backgrounds from bb, J/ Ψ and EWK pp $\rightarrow 4\mu$
- No excess data is observed : diagonal signal region : $m_{\mu\mu1} \simeq m_{\mu\mu2}$

NMSSM limits

 ◆ 95% CL upper limits as functions of m_{a1} for m_{h1} = 86,125,150 GeV

Dark SUSY Interpretation :

- predict cold dark matter at ~1TeV scale
- $U(1)_D$ is broken, giving rise to light dark photons (γ_D)
- γ_D weakly couples to SM particles via small kinetic mixing (ϵ)

CMS Preliminary

2.8fb⁻¹ (13 TeV)

8

 $pp \rightarrow h \rightarrow 2n_1 \rightarrow 2\gamma_D + 2n_D \rightarrow 4\mu + X$

6

4

 $m_{\gamma \rm D}[{\rm GeV}]$

• Lightest neutralino (n₁) is no longer stable and can decay to a dark neutralino (escape from detection) and a dark photon " $n_1 \rightarrow n_D + \gamma_D$ "

CMS PAS HIG-16-035

- 95% CL upper limits on $\sigma(pp \rightarrow h \rightarrow 2\gamma_D + X)Br(h \rightarrow 2\gamma_D + X)$
 - colored contours represent different values of Br(h $\rightarrow 2\gamma_D + X$) in the range 1-40%
 - assumed $m_{n1} = 10 \text{ GeV}$, $m_{nD} = 1 \text{GeV}$

5 April 2017

2

10⁻²

 10^{-4}

10⁻⁶

10⁻⁸

10⁻¹⁰

()

Kinetic mixing parameter ϵ

Pheni

$h \rightarrow aa \rightarrow 2\mu 2\tau$

- + Reconstructed events with 2µ (good resolution) plus 2τ
 - combined 5 final states $\rightarrow \mu\mu\tau_{e}\tau_{e}, \mu\mu\tau_{e}\tau_{\mu}, \mu\mu\tau_{e}\tau_{h}, \mu\mu\tau_{\mu}\tau_{h}$ and $\mu\mu\tau_{h}\tau_{h}$
- ★ Limits set on Br(h → aa) x Br(a → ττ)² from an unbinned fit of m_{µµ} distributions with the following relation

h→aa→ 4τ (1)

- Focus ggh \rightarrow aa $\rightarrow 4\tau$
 - same-sign di-muon events with large angular separation plus one nearby opposite-sign track (µ+track)
- Signal extracted with binned maximum likelihood fit to the 2D distribution of (m_{µtrack1}, m_{µtrack2})
- No excess is observed

h→aa→4τ (2)

- + Different analysis strategy ($\tau_{\mu}\tau_{x}$ using HPS algorithm for hadronic tau)
 - including ggH, WH, ZH and VBF production modes of h(125)
 - ▶ higher mass region covered $m_a \in 5-15$ GeV
- No excess is found above the SM backgrounds
 - upper limits on Br(h → aa)Br(a → ττ)² are set assuming SM cross-sections for all Higgs production modes

CMS PAS HIG-14-022

h→aa→2µ2b

- Advantage of the higher rate and lower background contamination in comparison with the 4µ and 4b final states
 - No significant excess is observed
 - upper limits are set on $\sigma_{ggF} \times Br(h \rightarrow aa \rightarrow \mu\mu bb)$ with ranging between 4 to 12 fb for $m_{\mu\mu} \in 25$ to 65 GeV

Overview of h→aa

$$\frac{\Gamma(a \to \mu\mu)}{\Gamma(a \to \tau\tau)} = \frac{m_{\mu}^2 \sqrt{1 - (2m_{\mu}/m_a)^2}}{m_{\tau}^2 \sqrt{1 - (2m_{\tau}/m_a)^2}}.$$

- ◆ Upper limits from different h→aa searches in the context of "2HDM+S"
 - Type-1 and Type-2
 - quarkonia decays at 3, 5, 9, 11 GeV
 - all results from 8 TeV data

Lepton Flavor Violation

5 April 2017

LFV Higgs Decays

- + Forbidden in the SM, described by **composite Higgs** or **2HDM** models
- + LFV Higgs couplings allow $\mu \rightarrow e, \tau \rightarrow \mu, \tau \rightarrow e$ to proceed via **a virtual Higgs boson**

- Indirect constraints to branching ratios of h → eµ, h → eτ, h → μτ (theoretical approach described in JHEP 03 (2013) 26)
 - stringent constraints from $\mu \rightarrow e\gamma$, upper limit at 95% CL **Br(h\rightarrow \mu e) < O(10⁻⁸)**
 - bounds from τ → μγ and τ → eγ indirectly provide upper limit at 95% CL Br(h → μτ) and Br(h → eτ) < O(10%)

LFV h→eµ,e/μτ

- Similar signature to the SM h→ττ and h→µµ searches but significant kinematic differences
- Provide direct constraints on the off-diagonal Higgs Yukawa couplings

h→eµ

- Very clean but branching ratio strongly constrained!
- > 10 channels (barrel/endcap leptons mix with 0-1-2 jets)
- > unbinned likelihood fit to $M_{e\mu}$ distribution

h→eτ and μτ

- > 3 categories (0,1,2 jets) from au_{had} and au_{lep}
- Iarge background leads to high systematic uncertainties
- binned likelihood fit to the distributions of M_{col} (m_h estimated with collinear approx.)

5 April 2017

LFV $h \rightarrow e\mu, e/\mu\tau$

2.3 fb⁻¹ (13 TeV)

Observed

Expected

± 1 std deviation

± 2 std deviation

8 TeV [Phys. Lett. B 749 (2015) 337]:

Observed

---- Expected

15

20

25

CMS PAS HIG-16-005

X

CMS PAS HIG-14-040

(0.75% expected)

Br(h→μτ) < 1.20% (1.62% expected)

10

5

No excess is observed

(2.4 σ at 8 TeV from h \rightarrow µ τ not confirmed but comparable results)

Higgs Yukawa Couplings

 The constraints on Br(h→eµ), Br(h→eτ) and Br(h→µτ) can be bounded on the Higgs Yukawa couplings comparing to theoretical numbers*

 $h \rightarrow e\mu : \sqrt{|Y_{e\mu}|^2 + |Y_{\mu e}|^2} < 5.4 \ge 10^{-4} (< 3.6 \ge 10^{-6})$

 $h \rightarrow e\tau : \sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 0.0024 (< 0.014)$

 $h \rightarrow \mu \tau : \sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 0.0032 (< 0.016)$

- + The discovery of the SM-like Higgs boson opens an era of search for new physics
- h(125)→invisible searches at CMS shown the latest results from Run-2 at 13 TeV with 2.3 fb⁻¹ and some new results with 12.9 fb⁻¹ and their combinations
- h(125)→aa searches done in many channels and interpreted results in the context of 2HDM+S
- ◆ Direct searches for LFV h(125) decays can constrain Br(h→LFV) and set bounds on the off-diagonal Higgs Yukawa couplings
- Stay tuned! a lot more to come!
 - many more BSM results with full 2016 dataset (36 fb⁻¹) are on the way

Thanks for your attention!

References

- ✦ CMS Public Results
 - http://cms.web.cern.ch/org/cms-papers-and-results
 - http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html
 - https://cds.cern.ch/collection/CMS%20Physics%20Analysis%20Summaries?In=en

CMS PAS ID

♦ h(125)→invisible searches

- VBF channel : CMS PAS HIG-16-009
- VH channel : CMS PAS HIG-16-008, CMS PAS EXO-16-013
- ggH channel : CMS PAS EXO-12-055, CMS PAS EXO-16-037
- combination : CMS PAS HIG-16-016

+ h(125)→aa searches

- → h→aa→4µ : CMS PAS HIG-16-035
- → h→aa→2µ2 τ : CMS PAS HIG-15-011
- ► $h \rightarrow aa \rightarrow 2\mu 2b$: CMS PAS HIG-14-041
- ► h→aa→4τ : CMS PAS HIG-14-019, CMS PAS HIG-14-022
- combination : CMS PAS HIG-16-015
- + LFV h(125) decays
 - → $h \rightarrow \mu \tau$: CMS PAS HIG-16-005
 - h→eµ,eτ : CMS PAS HIG-14-040

* http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/

Compact Muon Solenoid (CMS)

Luminosity 2011-2016

CMS Integrated Luminosity, pp

Overview of h→aa

5 April 2017

LFV Indirect Constraints

• Constraints on flavor violating Higgs couplings to e, μ , τ for a Higgs mass m_h = 125 GeV and assuming that the flavor diagonal Yukawa couplings equal the SM values

_	Channel	Coupling	Bound	
	$\mu ightarrow e \gamma$	$\sqrt{ Y_{\mu e} ^2+ Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$	JHEP 03 (2013) 026
	$\mu ightarrow 3e$	$\sqrt{ Y_{\mu e} ^2+ Y_{e\mu} ^2}$	$\lesssim 3.1 imes 10^{-5}$	
	electron $g-2$	${ m Re}(Y_{e\mu}Y_{\mu e})$	$-0.019\ldots0.026$	111
	electron EDM	$ { m Im}(Y_{e\mu}Y_{\mu e}) $	$<9.8\times10^{-8}$	$\Gamma(\mathrm{H} o \ell^lpha \ell^eta) = rac{m_\mathrm{H}}{8\pi} ig(Y_{\ell^eta \ell^lpha} ^2 + Y_{\ell^lpha \ell^eta} ^2ig),$
	$\mu ightarrow e$ conversion	$\sqrt{ Y_{\mu e} ^2+ Y_{e\mu} ^2}$	$< 1.2 \times 10^{-5}$	
	M - \overline{M} oscillations	$ Y_{\mu e}+Y^*_{e\mu} $	< 0.079	$B(H \rightarrow \ell^{\alpha} \ell^{\beta}) = \Gamma(H \rightarrow \ell^{\alpha} \ell^{\beta})$
	$ au ightarrow e\gamma$	$\sqrt{ Y_{ au e} ^2+ Y_{e au} ^2}$	< 0.014	$B(\Pi \rightarrow \ell \ \ell^{\alpha}) = \frac{\Gamma(\Pi \rightarrow \ell^{\alpha} \ell^{\beta}) + \Gamma_{SM}}{\Gamma(\Pi \rightarrow \ell^{\alpha} \ell^{\beta}) + \Gamma_{SM}}$
	au ightarrow 3e	$\sqrt{ Y_{ au e} ^2+ Y_{e au} ^2}$	$\lesssim 0.12$	
	electron $g-2$	$\operatorname{Re}(Y_{e au}Y_{ au e})$	$[-2.1\ldots2.9] imes10^{-3}$	
_	electron EDM	$ { m Im}(Y_{e au}Y_{ au e}) $	$< 1.1 \times 10^{-8}$	
	$ au ightarrow \mu\gamma$	$\sqrt{ Y_{ au\mu} ^2+ Y_{\mu au} ^2}$	0.016	
	$ au ightarrow 3\mu$	$\sqrt{ Y_{ au\mu}^2+ Y_{\mu au} ^2}$	$\lesssim 0.25$	
	muon $g-2$	${ m Re}(Y_{\mu au}Y_{ au\mu})$	$(2.7\pm0.75) imes10^{-3}$	
	muon EDM	${\rm Im}(Y_{\mu\tau}Y_{\tau\mu})$	$-0.8 \dots 1.0$	
	$\mu ightarrow e \gamma$	$\left(Y_{\tau\mu}Y_{e\tau} ^2 + Y_{\mu\tau}Y_{\tau e} ^2\right)^{1/4}$	$< 3.4 \times 10^{-4}$	
_				—