Minimum bias and underlying event measurements with CMS

Benoît Roland (DESY) on behalf of the CMS collaboration

DIS 2017 Workshop

3-7 April 2017 Birmingham, UK

Motivation

We want to probe the dynamics of hadron production investigate the behavior of its different components as well as their universality

- We want to probe the transition scale between the perturbative and non-perturbative regions
 - We study different observables sensitive to specific components of the hadron production
- inclusive observable: charged particle density in minimum bias events
- differential observables: charged particle and energy densities with respect to the direction of the leading object in hadronic events and Drell-Yan events

Description of the hadron production

Phenomenology of the low- p_T region

• total 2 \rightarrow 2 partonic cross section: $\sigma(p_T) \propto 1/p_T^2$

is divergent towards low p_T and eventually becomes larger than σ_{inel}

• At LHC energies: $\sigma(p_T) > \sigma_{inel}$ already for $p_T \sim 5$ GeV

 \rightarrow Cross section needs to be tamed in the low p_T region

- In PYTHIA: the rise of the 2 \rightarrow 2 partonic cross section is controled by:
 - an infrared cutoff p_{T0} tuned to data:

$$\sigma(p_T) \propto rac{1}{p_T^2 + p_{T0}^2}$$

energy dependence parametrised by a power law:

$$p_{T0}(\sqrt{s}) = p_{T0}(\sqrt{s_0}) \left(\frac{\sqrt{s}}{\sqrt{s_0}}\right)^c$$

multiple partonic interactions (MPI):

$$<$$
 n_{MPI} $>= \sigma(p_T)/\sigma_{inel}$

Charged particle pseudorapidity density at 13 TeV - NSD

[CMS-PAS-FSQ-15-008]

- $\, {f o} \,$ Results corrected to primary charged particles ${\it N_{ch}} \geq 1$ ${\it p_T} > 0.5$ GeV $|\eta| < 2.4$
- Different event categories based on the activity in the forward region $3 < |\eta| < 5$ At least one particle with E > 5 GeV in both forward regions \rightarrow NSD enhanced sample

 PYTHIA8 with different tunes and EPOS LHC show similar agreement with the data HERWIG++ (version 6.521) UE-EE-4C is not able to describe the measurement
 difficult to describe simultaneously the density in the central and most forward regions

A (□) ► A (□)

Charged particle pseudorapidity density at 13 TeV - SD

• Results corrected to primary charged particles - $N_{ch} \ge 1$ - $p_T > 0.5$ GeV - $|\eta| < 2.4$

At least one particle with E > 5 GeV in only one of the forward regions,

no activity on the other side \rightarrow SD enhanced sample

particle density ~ 4 times smaller → correlation between the central and forward regions
 PYTHIA8 4C MBR gives the best description
 HERWIG++ (version 6.521) UE-EE-4C has no diffractive component
 Larger model dependence not covered by the systematic uncertainties

Underlying event measurements - strategy

- Underlying Event: activity not attributed to the hardest partonic scattering Initial-State Radiation, Final-State Radiation, Multiple Partonic Interactions, proton remnants
- Experimentally: final-state hadrons can not be identified as coming from one of these processes
 define 3 regions in φ with respect to the direction of the leading object

Towards region ($|\Delta \varphi| < 60^\circ$) and Away region ($|\Delta \varphi| > 120^\circ$)

 \rightarrow dominated by the leading object and the hadronic recoil

Transverse region ($60^\circ < |\Delta \varphi| < 120^\circ$)

 \rightarrow most sensitive to the UE activity

Separate activity from Radiation and Multiple Partonic Interactions

- TransMIN: transverse region with the lowest activity

 MPI
- TransMAX: transverse region with the highest activity \rightarrow MPI + Radiation
- TransDIF: difference between TransMAX and TransMIN \rightarrow Radiation
- TransAVE: average between TransMAX and TransMIN

Underlying event with leading particles and jets at 13 TeV

[CMS-PAS-FSQ-15-007]

• Average particle density versus leading jet p_T for charged particles - $p_T > 0.5$ GeV - $|\eta| < 2$

- 2 different regimes:
- at low p_T : sharp rise due to the increase of the MPI activity
- at higher p_T : MPI activity saturates, slow increase due to the ISR and FSR contributions TransMIN flatter at high p_T (MPI saturated) than TransMAX and TransDIF (radiative increase)

Underlying event with leading particles and jets at 13 TeV

• Average energy density versus leading jet p_T for charged particles - $p_T > 0.5$ GeV - $|\eta| < 2$

qualitative behavior described by the predictions:

- level of agreement of 10 20% in the plateau region
- larger difference between models in the low p_T region

→ data better described by PYTHIA8 Monash and CUETP8M1 HERWIG CUETHS1 fails in the low p_T region (lack of diffractive events) EPOS describes the rising part but fails to describe the plateau

< 🗇 🕨

Underlying event with leading particles and jets at 13 TeV

• Average particle density versus leading jet p_T - energy dependence 2.76 TeV \rightarrow 13 TeV

strong energy dependence well reproduced by the different models increase of the parton densities at smaller momentum fraction TransMIN shows a stronger rise than TransDIF

 \longrightarrow MPI activity grows faster with \sqrt{s} than activity from ISR and FSR

New results!

[CMS-PAS-FSQ-16-008]

• 2 muons from Z leptonic decay with $p_T>$ 10 and 20 GeV, $|\eta|<$ 2.4 and 81 < $M_{\mu\mu}<$ 101 GeV

average particle and energy densities for charged particles with $p_{\mathcal{T}} > 0.5$ GeV and $|\eta| < 2$

in the towards, transverse and away regions

• test the process universality of the underlying event activity

test the underlying event activity at higher scale

no Final-State Radiation \rightarrow more direct access to Initial-State Radiation and MPI

test the universality of the tunes interfaced with different event generators

- MADGRAPH (Z + up to 4 partons at LO) + PYTHIA8 CUETP8M1
- POWHEG (Z + up to 2 partons at NLO) + PYTHIA8 CUETP8M1
- POWHEG + HERWIG++ EE5C

イロト イポト イヨト イヨ

UE in DY - average particle density versus dimuon p_T

• at low p_T : no sharp rise, MPI activity already saturated (hard scale $M_{\mu\mu}$)

- at higher p_T: slow increase of the ISR activity in the transverse and towards regions sharp increase of the ISR activity in the away region (recoiling hadronic activity)
- similar activities in the 3 regions as dimuon p_T → 0
 → similar MPI activities in the 3 regions → different behaviors due to varying ISR

DIS 2017 Workshop 12 / 1

< ロ > < 回 > < 回 > < 回 > < 回 >

UE in DY - average energy density versus dimuon p_T

POWHEG + HERWIG++ EE5C overestimates the activity by 10-15% in all regions POWHEG + CUETP8M1 describes the data within 5% MADGRAPH + CUETP8M1 gives the best description

Benoît Roland (DESY)

• • • • • • • • • • • • •

UE in DY - transverse activity at different energies

average particle density

average energy density

$1.96~\text{TeV} \rightarrow 7~\text{TeV} \rightarrow 13~\text{TeV}$

POWHEG + HERWIG++ EE5C overestimates data by 40 to 10%

POWHEG + **CUETP8M1** describes data within 10 to 5%

increase in densities

< □ > < 同 > < 三 > < 三

25-30% from 7 to 13 TeV models in good agreement

60-80% from 1.96 to 7 TeV models predict lower increase particularly at low p_T

p^{##}[GeV/c]

UE in DY - MPI activity at different energies

at low dimuon p_T : underlying event activity dominated by MPI contributions

and similar in transverse and towards regions

→ average particle and energy densities for dimuon p_T < 5 GeV versus √s in the combined transverse and towards regions

POWHEG + PYTHIA8 without MPI \rightarrow contributions from radiation very small increase of MPI activity well reproduced by POWHEG + CUETP8M1 overestimated by POWHEG + HERWIG++ EE5C Minimum bias and underlying event measurements probe the dynamics of hadron production with increasing precision

Sensitivity to the parton densities at small x and small scale, Initial-State Radiation, Final-State Radiation and Multiple Partonic Interactions

Various observables enable to measure these different components independently from each other

Results are valuable inputs to further constrain phenomenological models used to describe the particle production at low p_T

Image: A math a math

Thanks for your attention!

< □ > < □ > < □ > < □ > < □ > < □

Back up

イロト イヨト イヨト イヨト

CMS publications

- Underlying Event Measurements with Leading Particles and Jets in proton-proton collisions at $\sqrt{s} = 13$ TeV, CMS-PAS-FSQ-15-007.
- Measurement of the underlying event using the Drell-Yan process in proton-proton collisions at $\sqrt{s} = 13$ TeV, CMS-PAS-FSQ-16-008.
- Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at $\sqrt{s} = 13$ TeV by the CMS experiment, CMS-PAS-FSQ-15-008.