Measurement of the diboson production cross sections at 8TeV and 13TeV and limits on anomalous triple gauge couplings with the ATLAS detector

Angela Burger LAPP Annecy

on behalf of the ATLAS collaboration

DIS 2017 Birmingham

06.04.17

Motivation & Outline

- Test gauge structure of the Standard Model
- Check validity of Standard Model theory predictions
- Probe new physics beyond the reach of the LHC in a model-independent way via anomalous triple gauge couplings (aTGCs)

Focus on:

- WW @ 13 TeV (+0 jets),
 @ 8 TeV (0 and 1 jet associated production)
- WZ @ 8 and 13 TeV
- ZZ @ 8 and 13 TeV
- aTGC limits

Angela Burger

06.04.17 2 / 26

W^+W^- cross section measurements @ 8 & 13 TeV

W^+W^- - Measurement strategy @ 8 TeV

- $W^+W^- \rightarrow \ell \nu \ell' \nu'$ $(\ell, \ell' = e, \mu)$
- Jet veto ($p_T^{jet} > 25 \text{ GeV}$) to suppress dominant top background ("0jet")
- Measure WW+1jet ("1jet"), decrease experimental uncertainty by combining "0&1jet" measurement and compare to improved theory predictions
- WW+1jet measurement only in $e\nu\mu\nu$ channel (lowest background, highest signal acceptance)
- Event selection in "0&1 jet" analyses very similar to facilitate combination $(\sigma_{\it fid}^{\leq 1\it jet})$

Selection cut	e μ		$ee/\mu\mu$	
	"0jet"	"1jet"	" 0jet"	× 2000
Number of additional	0	0	0	ATLAS - Data
leptons ($p_T > 7 \text{ GeV}$)				Δ 15 = 8 TeV, 20.3 fb WW MC
<i>m</i> _{//} [GeV]	> 10	> 10	> 15	2000 Drell-Yan MC
$ m_Z - m_{II} $ [GeV]	-	-	> 15	2000
$E_{T,Rel}^{miss}$ [GeV]	> 20	> 20	> 45	1500
p[GeV]	> 20	> 20	> 45	
$\Delta \Phi_{E^{miss}, p^{miss}}$	< 0.6	< 2.0	< 0.3	
Number of jets	0	1	0	
$(p_T > 25 \text{GeV})$				

Note: Color scheme of cuts on the table corresponds to color of affected background in the plot. Jet multiplicity JHEP 09 (2016) 029, Phys. Lett.B763(2016)114

W^+W^- - Cross section results @ 8 TeV

- $\Delta \sigma_{fid}^{0jet}(e\mu)$: $\Delta_{stat.} = 1.8\%$, $\Delta_{sys.} = 6.7\%$ Dominant uncertainties:
 - Experimental: Jet energy scale, W+jets bkg and luminosity
 - Modeling: jet veto requirement
- $\Delta \sigma_{fid}^{1jet}$: $\Delta_{stat.} = 4.5\%$, $\Delta_{sys.} = 11\%$ Dominant uncertainties:
 - jet energy scale and top quark background
- Δσ^{≤1jet}_{fid}: Δ_{stat.} = 1.8%, Δ_{sys.} = 5.1% 0+1 jet combination leads to reduced uncertainties

Measurements and \approx NNLO theory predictions in very good agreement

JHEP 09 (2016) 029, Phys. Lett.B763(2016)114

W^+W^- @ 13 TeV - cross section measurement

- Measurement performed in $WW \rightarrow e \nu \mu \nu$ decay channel, apply jet veto (WW+0jets)
- Event selection similar to WW+0jet @8TeV with minor differences

Good agreement with theory predictions Dominant uncertainty:

Jet selection and calibration (7.3%)

Total relative uncertainty on fiducial cross-section: 11% ($\Delta_{stat.} = 3.8\%$, $\Delta_{sys.} = 9.5\%$) arXiv:1702.04519

W^+W^- @ 8 TeV: Differential cross sections

- Use WW+0jet $\rightarrow e \nu \mu \nu$
- Iterative Bayesian approach used to unfold differential distribution from detector to particle level
- Shapes well described by NLO, inclusive cross-section higher than prediction @NLO
- p_T^{lead} used to extract aTGCs (discussed later in the talk)

JHEP 09 (2016) 029

stat uncertair

ata, total uncertainty

Powhea+Resumm

owhea

MC@NLO

120 140

p_ (leading lepton) [GeV]

WZ cross section measurements @ 8 & 13 TeV

Inclusive WZ measurements: 8 and 13 TeV

• Use WZ lepton decays to e, μ □WZ signal Main background: misidentified leptons, ZZ ۲ 77 Misid. Leptons Dominant uncertainties from: tt+V t7 Lepton reconstruction & identification Misidentified lepton background 8 TeV 13 TeV 127 ± 010 1.16 ± 0.21 666 ATLAS PPF ATLAS Preliminary √s = 8 TeV, 20.3 fb⁻¹ vs = 13 TeV, 13.3 fb⁻¹ uee 1.21 ± 0.08 uee 1.11 ± 0.14 W[±]7 W[±]7 euu 1.19 ± 0.08 Data еци 1.18 ± 0.18 Data Powhea Powhea+Pvthia μμμ 111 ± 0.06 μμμ 1.29 ± 0.10 combined 1.17 ± 0.05 combined 1.24 ± 0.09 theory. $\sigma_{w^{\pm 7}}^{\text{fid.}} / \sigma_{w^{\pm 7}}$ $\sigma_{W^{\pm 7}}^{\text{fid.}}$ / theory 4% relative uncertainty 7% relative uncertainty

 \Rightarrow Measurements underestimated by NLO predictions

Phys.Rev.D93,092004(2016), Phys.Lett.B.752(2016) 1 & ATLAS-CONF-2016-043

WZ total cross section results

- NNLO predictions available now for WZ total cross section [Grazzini et al, arXiv:1604.08576]
- Good agreement between theory prediction @NNLO
- NNLO/NLO was not covered by theory scale uncertainty

Phys.Rev.D93,092004(2016), Phys.Lett.B.752(2016) 1, ATLAS-CONF-2016-043

WZ differential cross sections

- Sherpa better describes high jet multiplicities (up to 3 jets at LO in Sherpa)
- m_T^{WZ} used to probe aTGCs, data & SM compatible \Rightarrow set limits

Phys.Lett.B.752(2016) 1, ATLAS-CONF-2016-043

ZZ cross section measurements @ 8 & 13 TeV

ZZ measurements: 8& 13 TeV

- On-shell ZZ-production measured (66< $m_{\ell\ell}$ < 116 GeV)
- Two measured channels: $ZZ \rightarrow \ell \ell \ell' \ell'$ (8 &13 TeV), $ZZ \rightarrow \ell \ell \nu \nu$ (8 TeV), $\ell, \ell' = e, \mu$
- $ZZ \rightarrow 4\ell$: very clean channel ($\frac{S}{B} \approx 17$), main bkg from fake leptons

• $ZZ \rightarrow \ell \ell \nu \nu$: Background from:

- Dominant uncertainties:
 - $ZZ \rightarrow 4\ell$: lepton reconstruction, isolation, @13 TeV: statistics
 - $ZZ \rightarrow 2\ell 2\nu$: jet modeling & veto, E_T^{miss} measurement

JHEP01(2017)099, Phys.Rev.Lett.116,101801(2016)

ZZ inclusive cross section

- 8% total uncertainty on measured cross section @ 8 TeV
- Good description of data by NNLO theory

JHEP01(2017)099, Phys.Rev.Lett.116,101801(2016)

ZZ - Differential cross section

- 2 channels unfolded separately
- $p_T^{Z_{lead}}$ (ZZ \rightarrow 4 ℓ) and p_T^Z (ZZ \rightarrow 2 ℓ 2 ν) used to obtain limits on aTGCs
- $ZZ \rightarrow 4\ell$ @ 8 TeV

 $ZZ \rightarrow 2\ell 2\nu$ @ 8 TeV

doi:10.1007/JHEP01(2017)099

Diboson cross section measurement - Summary

Limits on aTGCs

Short introduction to aTGCs

Several theoretical approaches with different parameterisations:

Effective Lagrangian $\mathcal{L} = ig_{WWW}[g_1^V(W_{\mu\nu}^+W^{-\nu} - W^{+\mu}W_{\mu\nu}^-)V^{\nu} + \kappa^V W_{\mu}^+W_{\nu}^-V^{\mu\nu} + \frac{\lambda^V}{m^2}W_{\mu}^{+\nu}W_{\nu}^{-\rho}V_{\rho}^{-\mu}]$ in SM, $g_1^V = \kappa^V = 1$ and $\lambda^V = 0$, parameterise deviations using $\Delta g_1^V = g_1^V - 1$, $\Delta \kappa^V = \kappa^V - 1$ and λ^V

Vertex function approach for neutral aTGCs:

Parameterise deviations from the SM using two CP violating parameters f_A^V $(V = Z, \gamma)$ and two CP-conserving parameters f_5^V (0 in SM)

• Effective field theory (EFT) approach:

Add linear combinations of higher dimension operators to SM: $\mathcal{L} = \mathcal{L}_{5M} + \sum_{i d=5}^{inf} \frac{1}{\lambda d - \lambda} \sum_{i} c_i \mathcal{O}_i^{(d)}$ ("\Lambda": scale of new physics)

$$\mathcal{O}_{WWW} = \frac{c_{WWW}}{\Lambda^2} Tr[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_W = \frac{c_W}{\Lambda^2}(D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_B = \frac{c_B}{\Lambda^2}(D_{\mu}\Phi)B^{\mu\nu}(D_{\nu}\Phi)$$

Charged aTGCs - WW and WZ: Results

• WW more sensitive to c_B as also sensitive to vertex involving γ

• *WZ* measurement gives stricter limits on *c_W* and *c_{WWW}* but less sensitive to *c_B* JHEP 09 (2016) 029, Phys.Rev.D93,092004(2016), ATLAS-CONF-2016-043

Neutral aTGCs - ZZ

Coupling	Expected (10^{-3})	Observed (10^{-3})
$f_4^{\gamma} \\ f_4^Z$	[-4.6, 4.8] [-4.0, 4.1]	[-3.8, 3.8] [-3.3, 3.2]
f_5^{γ} f_5^Z	[-4.8, 4.8] [-4.1, 4.1]	[-3.8, 3.8] [-3.3, 3.3]

$ZZ \rightarrow 2\ell 2\nu$ @8 TeV: p_T^Z

- No indications for neutral aTGCs
- Limits were derived using last two bins of $p_T^{Z_{lead}}$ -distributions $(Z \rightarrow 4\ell)$ and p_T^Z -distribution $(Z \rightarrow 2\nu 2\ell)$

JHEP01(2017)099

Summary & Conclusion

- In past year, precise measurements on dibosons were published which pushed theorists to improve their calculations
- Several recent diboson results from ATLAS for WW, ZZ and WZ
- All measurements show good agreement with NNLO theory predictions
- No hints for aTGCs found yet
- aTGC limits derived, more stringent than previous limits from ATLAS due to higher center-of-mass energy and luminosity
- Larger 13 TeV dataset will even further improve experimental precision

 $\sigma_{\it fid}^{\it VV'}$: Measurement in fiducial phase space defined by detector acceptance

$$\sigma_{\textit{fid}}^{VV'} = rac{N_{obs} - N_{bkg}}{C_{VV'} imes \mathcal{L}}$$

- *N*_{obs} = Observed data event number after applying selection cuts
- *N*_{bkg} = Total number of estimated background events
- $\mathcal{L} = \mathsf{Luminosity}$
- C_{VV'} = Factor correcting for detector effects (estimated using MC)

To compare with other experiments, extrapolate to total phase space:

- $A_{VV'}$ = Acceptance factor to extrapolate from fiducial PS to total PS (estimated using MC)
- Br = Branching fraction of measured final state for $\sigma_{fid}^{VV'}$

$$\sigma_{tot}^{VV'} = \frac{\sigma_{fid}^{VV'}}{A_{VV'} \times Br}$$

W^+W^- cross section measurement

Title	\sqrt{s} , lumi	Measured	Link
		quantities	
Measurement of total and	8 TeV,	σ_{fid} (0jets),	JHEP 09 (2016) 029
differential W^+W^- production cross	$20.3 fb^{-1}$	σ_{tot} , aTGC limits,	(Published 03/2016)
sections in proton-proton collisions	(2012 data)	Differential σ	
at \sqrt{s} =8 TeV with the ATLAS detector	,		
and limits on anomalous triple-gauge-			
-boson couplings			
	0.7.1/	(+1:++-)	Dhue Lett D762(2016)114
Measurement of VV VV production	8 lev,	σ_{fid} (+1jets),	Phys. Lett.B763(2016)114
in association with one jet in	$20.3 fb^{-1}$	σ_{tot} ,	(Published 08/2016)
proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$	(2012 data)	$\sigma \leq 1 j e t$	
· · · ·		1jet	
with the ATLAS detector		<u>fid</u>	
		fid	
Measurement of W^+W^- production	13 TeV,	σ_{fid} (0jets),	arXiv:1702.04519
	1	J3 TeV	/
cross section in pp collisions at a	3.16 fb ⁻¹		(Published 02/2017)
centre-of-mass energy of \sqrt{s} -13 TeV	(2015 data)	t id	
with the ATLAS experiment	(2010 data)		

Inclusive WZ measurement at 8 and 13 TeV

Title	\sqrt{s} , lumi	Measured quantities	Link
Measurements of $W^{\pm}Z$ production cross sections n pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings	8 TeV, 20.3 <i>fb</i> ⁻¹ (2012 data)	$\begin{array}{c} \sigma_{fid}, \ \sigma_{tot} \ , \\ \frac{W^+ z}{W^- z}, \\ \text{Differential } \sigma, \\ \text{limits on aTGCs,} \\ (\text{VBS } \& \text{aQGC}) \end{array}$	Phys.Rev.D93,092004(2016) (Published 03/2016)
Measurement of the WZ boson pair-production cross section in pp collisions at \sqrt{s} =13 TeV with the ATLAS Detector	13 TeV, 3.2fb ⁻¹ (2015 data)	$\begin{array}{c} \sigma_{fid}, \ \sigma_{tot} \ , \\ \frac{W^+ Z}{W^- Z}, \ \frac{W Z_{13 {\rm TeV}}}{W Z_{8 {\rm TeV}}}, \\ {\rm Differential} \ \sigma \end{array}$	Phys.Lett.B.752(2016) 1 (Published 06/2016)
Measurement of $W^{\pm}Z$ boson pair-production in pp collisions at \sqrt{s} =13 TeV with the ATLAS Detector and confidence intervals for anomalous triple gauge boson couplings	13 TeV, 13.3 fb^{-1} (2015+part of 2016 data)	Differential σ aTGC limits	ATLAS-CONF-2016-043 (Published 07/2016)

Measurement of the ZZ production cross section at 8 and 13 TeV

Title	\sqrt{s} , lumi	Measured quantities	Link
Measurement of the ZZ production	8 TeV,	$\sigma_{fid}, \sigma_{tot}$	doi:10.1007/JHEP01(2017)099
cross section in proton-proton	$20.3 fb^{-1}$	$(ZZ \rightarrow IIII)$	(Published 10/2016)
collisions at \sqrt{s} =8 TeV using the	(2012 data)	& $ZZ \rightarrow II \nu \nu$)	
ZZ ightarrow IIII and $ZZ ightarrow II u u$ decay		aTGC limits,	
channels with the ATLAS detector		Differential σ	
Measurement of the ZZ production	13 TeV,	$\sigma_{tot}, \sigma_{fid}$	Phys.Rev.Lett.116,101801(2016)
cross section in pp collisions	$3.2 fb^{-1}$	$(ZZ \rightarrow IIII)$	(Published 12/2015)
at $\sqrt{s}=13 ext{TeV}$ with the	(2015 data)	channel)	
ATLAS detector			