Vector boson and quarkonia production in $p+Pb$ and $Pb+Pb$ collisions with ATLAS at the LHC

Petr Gallus on behalf of the ATLAS Collaboration
25th International Workshop on Deep Inelastic Scattering and Related Topics
University of Birmingham
Why measure the Quarkonia and Vector bosons in A+A collisions

Vector bosons
• don’t interact with quark gluon plasma
• provide information on nuclear collision geometry and cold nuclear matter effects

Quarkonia
• bound states of c or b quarks and antiquarks
• interacts strongly with environment
• two types of interactions – cold and hot matter effects

Nuclear modification factor

\[
R_{AA} = \frac{N_{AA}}{\langle T_{AA} \rangle \times \sigma_{pp}}
\]

\[T_{AA} = \text{nuclear thickness function}\]

courtesy of A. Mocsy
ATLAS detector

- 2013 p+Pb @ 5.02 TeV
 - 28 nb$^{-1}$
- 2013 p+p @ 2.76 TeV
 - 4.0 pb$^{-1}$
- 2015 Pb+Pb @ 5.02 TeV
 - 0.49 nb$^{-1}$
- 2015 p+p @ 5.02 TeV
 - 25.0 pb$^{-1}$
Z boson measurements

Presented new measurements

• February 2017 Z boson production - ATLAS-CONF-2017-010
 • 2015 Pb+Pb $\sqrt{s_{NN}} = 5.02 \, TeV$

• September 2016 Z boson production - ATLAS-CONF-2016-107
 • 2015 p+p $\sqrt{s} = 5.02 \, TeV$ and 2013 p+Pb $\sqrt{s_{NN}} = 5.02 \, TeV$
Method

\textbf{p+p}

\textbf{Trigger p+p}
- one muon MU14 at HLT

\textbf{Analysis range}
- 2 muons, $p_T > 20$ GeV, $|y| < 2.4$
- $m_{\mu\mu} \in (66;116)$ GeV

\textbf{Pb+Pb}

\textbf{Event selection}
- $|z_0| < 150$ mm
- no pile-up

\textbf{Trigger}
- one muon MU8 at HLT

\textbf{Analysis range}
- 2 muons, $|y| < 2.5(2.4)$, $p_T > 20$ GeV
- $m_{\mu\mu} \in (66;116)$ GeV
- centrality 0–80%

\textbf{Yields are calculated by}
- subtracting the background
- applying the corrections
Data compared to prediction

Detector performance of the measurement is well described by simulations
Yields per event scaled by T_{AA} and R_{AA}

ATLAS Preliminary

pp, $\sqrt{s} = 5.02$ TeV, 24.7 pb$^{-1}$

pp

- data (statistical uncertainty)
- systematic uncertainty
- Powheg+Pythia CT14

rapidity y is the closest observable to x

pp data agree with by pQCD

$R_{AA} = 1$ mean same cross section as in pp

Pb+Pb measurements are compatible with pp measurement after scaling.

ATLAS-CONF-2016-107

ATLAS-CONF-2017-010

3/30/2017 Petr Gallus - Vector boson and quarkonia production in $p+Pb$ and $Pb+Pb$ collisions with ATLAS at the LHC
Yields in centrality scaled by T_{AA}

Yield scales well with T_{AA} in all centrality bins, in some bins yield has smaller uncertainty than T_{AA}.

ATLAS-CONF-2017-010
Nuclear modification function R_{pPb}

We observe suppression in forward rapidity in events corresponding to low x on nucleus, measurement is sensitive to nuclear shadowing which is not simulated in our MC.

ATLAS-CONF-2016-107
J/ψ and $\psi(2S)$ measurements

 - 2013 p+Pb $\sqrt{s_{NN}} = 5.02$ TeV
- June 2015 J/ψ and $\psi(2S)$ - ATLAS-CONF-2015-023
 - 2013 p+Pb $\sqrt{s_{NN}} = 5.02$ TeV and p+p $\sqrt{s} = 2.76$ TeV
- September 2016 J/ψ and $\psi(2S)$ - ATLAS-CONF-2016-109
 - 2015 Pb+Pb $\sqrt{s_{NN}} = 5.02$ TeV and p+p $\sqrt{s} = 5.02$ TeV
Method

Trigger: different for p+Pb and Pb+Pb
- p+Pb: at least one muon at L1 (MU0), 2 muons with $p_T > 2 \text{ GeV}$ at HLT
- Pb+Pb: at least one muon at L1 (MU4), 2 muons with $p_T > 4 \text{ GeV}$ at HLT

Analysis range
- p+Pb: $p_T \in \langle 8.5; 30 \rangle \text{ GeV}, |y^*| < 1.94 (1.5)$
- Pb+Pb: $p_T \in \langle 9; 40 \rangle \text{ GeV}, |y| < 2$, centrality 0–80%

Perform weighted 2D unbinned maximum likelihood fit
- dimuon invariant mass and lifetime
- extract fraction of prompt and non-prompt
 - Prompt – direct production, feed-down contribution
 - Non-prompt – decay from B hadrons
- per-Dimuon weight: trigger, reconstruction, acceptance
Non-Prompt fraction of J/ψ as a function of p_T

No visible $|y|$ dependence, but significant p_T dependence, both distributions are comparable.

ATLAS-CONF-2016-109

arXiv: 1505.08141 [hep-ex]
Non-Prompt fraction of J/ψ as a function of p_T

No significant centrality dependence, different slope than pp due to different suppression of fractions.

ATLAS Preliminary

PbPb $\sqrt{s_{NN}} = 5.02$ TeV, 0.49 nb$^{-1}$

J/ψ, $|y| < 2.0$

ATLAS-CONF-2016-109
For prompt J/ψ R_{PbPb} is a function of p_T, for non-prompt J/ψ no significant dependence of R_{PbPb} on p_T.

$R_{AA} < 1$ mean suppression.
Nuclear modification factor of J/ψ (R_{PbPb})

Suppression is strongly centrality dependent, regardless of on production mechanism.

ATLAS-CONF-2016-109
Comparison of Z boson and J/ψ yields in $p+Pb$ collisions

ATLAS Preliminary

$p+Pb$ \$s_{NN}=5.02$ TeV

Prompt J/ψ to Z ratio

Prompt J/ψ

Ratio of the yields is independent on event activity, number of Z and J/ψ particles scale with the number of interactions

Non-prompt J/ψ

ATLAS-CONF-2015-023

30/03/2017 Petr Gallus - Vector boson and quarkonia production in $p+Pb$ and Pb+Pb collisions with ATLAS at the LHC
Summary

• Charmonia and Z boson production in p+Pb and Pb+Pb collisions are presented.

• Z boson
 • After scaling by T_{AA}, yields are described by pQCD
 • Nuclear modification factor R_{PbPb} is consistent with unity in centrality and rapidity

• Charmonia (J/ψ and $\psi(2S)$):
 • Charmonium R_{pPb} shows no obvious p_T and rapidity dependence.
 • Charmonium R_{PbPb} shows different behavior for prompt and non-prompt J/ψ in p_T dependence.
 • Charmonium R_{PbPb} shows strong centrality dependence.

• Ratio N_{ψ}/N_{Z} in p+Pb is independent on event activity and could be used as a benchmark for T_{AA} and N_{coll}.

• ATLAS HI Public Results
Additional slides
Pseudo-proper decay time

\[\tau = \frac{L_{xy} \mu\mu}{p_T^{\mu\mu}} \]

\(L_{xy} = \) projection of decay length on the transverse plane
Definition of y^*

\begin{align*}
 y^* &= y_{lab} - 0.465 \\
 y^* &= -(y_{lab} + 0.465)
\end{align*}

due to shift of center of mass

y^* is defined as positive in proton beam direction
Nuclear modification factor R_{AA} and R_{pA}

\[R_{AA} = \frac{N^{AA}}{\langle T_{AA} \rangle \times \sigma_{pp}} \]

- N^{AA} - per-event yield of quarkonia states in A+A collisions
- $\langle T_{AA} \rangle$ - mean nuclear function ψ
- σ_{pp} - cross section in pp collisions

\[R_{pA} = \frac{1}{A^{Pb}} \frac{d^2 \sigma_{\psi}^{Pb}/dy \ast dp_T}{d^2 \sigma_{\psi}^{pp}/dy \ast dp_T} \]

\[R_{pA}^{cent} = \frac{\langle 1/N_{evt}^{cent} \rangle \ d^2 N^{Pb}/dy dp_T |_{cent}}{\langle T_{pp} \rangle_{cent} d^2 \sigma_{pp}/dy dp_T} \]
Simultaneous Fit Method

\[\text{PDF}(m, \tau) = \sum_{i=1}^{7} k_i f_i(m) \cdot h_i(\tau) \cdot g(\tau) \]

CB: Crystal ball function
G: Gaussian
E: Exponential
g: Double Gaussian
Pb+Pb per-event yields

Yields are centrality and p_T dependent

ATLAS-CONF-2016-109

30/03/2017 Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC
Nuclear modification factor of J/ψ (R_{pPb})

No significant p_T dependence, R_{pPb} is above unity, but within systematics uncertainties.

pp reference is interpolated from 2.76 TeV, 7 TeV and 8 TeV.

pp reference @5.02 TeV is in preparation.

ATLAS-CONF-2015-023