Measurements of vector boson fusion with the ATLAS detector

Chris Hays, Oxford University

on behalf of the ATLAS Collaboration

25th International Workshop on Deep Inelastic Scattering 6 April 2017

Motivation

Large cross sections and clean signatures of W→Iv and Z→II production allow the most precise probes of electroweak boson production in a vector-boson fusion topology

Sensitive to triple-gauge couplings

Validate uncertainties common to VBF Higgs measurements

ATLAS VBF W & Z measurements

Cross sections in several fiducial regions

Differential cross sections of QCD and EW Vjj production in VBF fiducial regions

Constraints on anomalous triple-gauge couplings

EW Zjj production at high m_{jj}

4 EW vertices

QCD Zjj production 2 EW vertices

JHEP 04 (2014) 031

t-channel production gives a signature of small-angle scattering: good S/B at high m_{jj} $Jet\ p_T > 50,\ 40\ GeV$

Two m_{jj} regions defined: $m_{jj} > 250$ GeV and $m_{jj} > 1$ TeV

Further enhance signal by requiring no additional jets in rapidity spanned by two jets

JHEP 04 (2014) 031

Sherpa does not model m_{ij} shape well for QCD Zjj production Apply a correction to this shape based on events with an additional jet in the gap

Measure EW Zjj production after correction Also constrain anomalous couplings using events with $m_{jj} > 1$ TeV

Region	Measurement	Powheg	
m _{ij} > 250 GeV	σ _{EW} = 54.7 ±4.6 (stat) +9.8 _{-10.4} (sys) ±1.5 (lum) fb	$\sigma_{EW} = 46.1$ $\pm 0.2 \text{ (stat)}$ $^{+0.3}_{-0.2} \text{ (scale)}$ $\pm 0.8 \text{ (PDF)}$ $\pm 0.5 \text{ (model)}$	
m _{ij} > 1 TeV	σ _{EW} = 10.7 ±0.9 (stat) ±1.9 (sys) ±0.3 (lum) fb	σ _{EW} = 9.4 ±0.1 (stat) ±0.2 (scale) ±0.2 (PDF) ±0.1 (model)	

arXiv:1703.04362

Higher cross section allows:

Most precise measurement of VBF boson production Only measurement of VBF boson production at 7 TeV Differential measurements of VBF boson production

Similar selection to VBF Z measurement Powheg MiNLO used to model m_{jj} distribution

arXiv:1703.04362

Apply a correction to the m_{ij} shape to reduce uncertainties (using "forward-lepton region") Test correction in region where there is an additional jet in the gap

Correction reduces total uncertainty on measurement of σ/σ_{SM} from 0.18 to 0.14

No jet in gap (to derive correction)

With jet in gap (to validate correction)

arXiv:1703.04362

Fit m_{jj} for the normalizations of QCD Wjj and EW Wjj

arXiv:1703.04362

\sqrt{s}	$\sigma_{ m meas}^{ m fid} \ [{ m fb}]$	$\sigma_{ m SM}^{ m fid}$ [fb]	Acceptance \mathcal{A}	$\sigma_{ m meas}^{ m inc}$ [fb]
7 TeV	$144 \pm 23 \text{ (stat) } \pm 23 \text{ (exp) } \pm 13 \text{ (th)}$	144 ± 11	0.053 ± 0.004	2760 ± 670
8 TeV	$159 \pm 10 \text{ (stat)} \pm 17 \text{ (exp)} \pm 20 \text{ (th)}$	198 ± 12	0.058 ± 0.003	2890 ± 510

9

Source	Uncertainty in $\mu_{\rm EW}$	
	$7 \mathrm{TeV}$	8 TeV
Statistical		
Signal region	0.094	0.028
Control region	0.127	0.044
Experimental		
Jet energy scale (η intercalibration)	0.124	0.053
Jet energy scale and resolution (other)	0.096	0.059
Luminosity	0.018	0.019
Lepton and $E_{\rm T}^{\rm miss}$ reconstruction	0.021	0.012
Multijet background	0.064	0.019
Theoretical		
MC statistics (signal region)	0.027	0.026
MC statistics (control region)	0.029	0.019
EW Wjj (scale and parton shower)	0.012	0.031
QCD Wjj (scale and parton shower)	0.043	0.018
Interference (EW and QCD Wjj)	0.037	0.032
Parton distribution functions	0.053	0.052
Other background cross sections	0.002	0.002
EW Wjj cross section	0.076	0.061
Total	0.26	0.14

arXiv:1703.04362

Perform differential measurements of QCD+EW and EW Wjj production Probe the various jet and lepton centrality phase spaces + four m_{jj} thresholds

of jets in gap between leading jets is an important distribution for extracting EW Wjj

> Can also be quantified as the fraction of events with no jet in the gap (the "Jet-veto efficiency")

	Jet-veto efficiency			
	$M_{jj} > 0.5 \text{ TeV}$	$M_{jj} > 1.0 \text{ TeV}$	$M_{jj} > 1.5 \text{ TeV}$	$M_{jj} > 2.0 \text{ TeV}$
Data	0.596 ± 0.014	0.54 ± 0.02	0.55 ± 0.03	0.63 ± 0.04
POWHEG +PYTHIA8 (QCD+EW)	0.597 ± 0.005	0.55 ± 0.01	0.57 ± 0.02	0.63 ± 0.03
Powheg +Pythia8 (QCD)	0.569 ± 0.002	0.45 ± 0.01	0.39 ± 0.01	0.36 ± 0.03

arXiv:1703.04362

Presence of EW Wjj clear in distributions of m_{jj} and jet rapidity separation QCD+EW Wjj dijet p_T distribution not well modelled by MC

arXiv:1703.04362

Differential measurements of EW Wjj require m_{jj} >1 TeV Subtract QCD Wjj before unfolding data Include distributions sensitive to anomalous gauge couplings

arXiv:1703.04362

Integrate measurements to obtain a range of fiducial cross sections

Region name	Requirements
Preselection	Lepton $p_{\rm T} > 25 \text{ GeV}$
	Lepton $ \eta < 2.5$
	$E_{\rm T}^{\rm miss} > 20 \text{ GeV}$
	$m_{\rm T} > 40~{\rm GeV}$
	$p_{\rm T}^{j_1} > 80 \text{ GeV}$
	$p_{\rm T}^{j_2} > 60 \text{ GeV}$
	Jet $ y < 4.4$
	$M_{jj} > 500 \text{ GeV}$
	$\Delta y(j_1, j_2) > 2$
	$\Delta R(j,\ell) > 0.3$
Fiducial and differential measurements	
Signal region	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} = 0$
Forward-lepton control region	$N_{\text{lepton}}^{\text{cen}} = 0, N_{\text{jets}}^{\text{cen}} = 0$
Central-jet validation region	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} \ge 1$
Differential measurements only	•
Inclusive regions	$M_{jj} > 0.5 \text{ TeV}, 1 \text{ TeV}, 1.5 \text{ TeV}, \text{ or } 2 \text{ TeV}$
Forward-lepton/central-jet region	$N_{\text{lepton}}^{\text{cen}} = 0, N_{\text{jets}}^{\text{cen}} \ge 1$
High-mass signal region	$M_{jj} > 1 \text{ TeV}, N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} = 0$
Anomalous coupling measurements only	
High- q^2 region	$M_{jj} > 1 \text{ TeV}, N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} = 0, p_{\text{T}}^{j_1} > 600 \text{ GeV}$

Fiducial region	$\sigma_{Wjj}^{\mathrm{fid}} imes \mathcal{B}_{W o \ell u} \ [\mathrm{fb}]$			
	QCD+EW		${ m EW}$	
	Data	Powheg + Pythia8	Data	POWHEG + PYTHIA8
Inclusive $M_{jj} > 0.5 \text{ TeV}$	1700 ± 110	1420 ± 150	_	_
Inclusive $M_{jj} > 1.0 \text{ TeV}$	263 ± 21	234 ± 26	64 ± 36	52 ± 1
Inclusive $M_{jj} > 1.5 \text{ TeV}$	56 ± 5	53 ± 5	20 ± 8	19 ± 0.5
Inclusive $M_{jj} > 2.0 \text{ TeV}$	13 ± 2	14 ± 1	5.6 ± 2.1	6.9 ± 0.2
Forward-lepton	545 ± 39	455 ± 51		_
Central-jet	292 ± 36	235 ± 28	_	_
Forward-lepton/central-jet	313 ± 30	265 ± 32	_	_
Signal $M_{jj} > 0.5 \text{ TeV}$	546 ± 35	465 ± 39	159 ± 27	198 ± 12
Signal $M_{jj} > 1.0 \text{ TeV}$	96 ± 8	89 ± 7	43 ± 11	41 ± 1

arXiv:1703.04362

Wjj signal region (Mˌ>1.0 TeV)

ATLAS

Constrain triple-gauge couplings using region of high Q²: $m_{jj}>1$ TeV & leading jet $p_T>600$ GeV 39 events predicted, 30 events observed

Interpret using an effective Lagrangian to dimension 6:

$$i\mathcal{L}_{\text{eff}}^{WWV} = g_{WWV} \left\{ \left[g_1^V V^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \right] - \left[\frac{\tilde{\kappa}_V}{2} W_{\mu}^- W_{\nu}^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} + \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_{\nu}^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \right] \right\},$$

dσ/dp_τ [fb/GeV]

10

And translate into an effective field theory: $\mathcal{L}_{EFT} = \sum_{i} \frac{c_i}{\Lambda^2} O_i$,

$$\begin{split} \frac{c_W}{\Lambda^2} &= \frac{2}{m_Z^2} (g_1^Z - 1), \\ \frac{c_B}{\Lambda^2} &= \frac{2}{\tan^2 \theta_W m_Z^2} (g_1^Z - 1) - \frac{2}{\sin^2 \theta_W m_Z^2} (\kappa_Z - 1), \\ \frac{c_{WWW}}{\Lambda^2} &= \frac{2}{3g^2 m_W^2} \lambda_V, \\ \frac{c_{\tilde{W}}}{\Lambda^2} &= -\frac{2}{\tan^2 \theta_W m_W^2} \tilde{\kappa}_Z, \\ \frac{c_{\tilde{W}WW}}{\Lambda^2} &= \frac{2}{3g^2 m_W^2} \tilde{\lambda}_V, \end{split}$$

Parameter	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$
$rac{c_W}{\Lambda^2}$	[-39, 37]	[-33, 30]
$rac{c_B}{\Lambda^2}$	[-200, 190]	[-170, 160]
$\frac{c_{WWW}}{\Lambda^2}$	[-16, 13]	[-13, 9]
$rac{c_{ ilde{W}}}{\Lambda^2}$	[-720, 720]	[-580, 580]
$rac{c_{ ilde{W}WW}}{\Lambda^2}$	[-14, 14]	[-11, 11]

Summary

Extensive and detailed studies of VBF in W→Iv and Z→II production performed at ATLAS

Differential measurements of important backgrounds performed in both W & Z production

Fiducial measurements of EW Wjj & Zjj performed with 7 and 8 TeV data

Differential measurements of EW Wjj performed with 8 TeV data

Constraints set on triple gauge couplings

