

Multi-differential jet cross sections from CMS

Engin Eren (DESY) on behalf of CMS Collaboration

> DIS 2017 Birmingham

> > 1

Probing QCD with Jet Cross Sections

• Jet production sensitive to quark and gluon distributions, and to α_S

Strong correlation between inclusive jet cross section and gluon at high-middle x

Strong correlation between inclusive jet cross section and quark at high x

Transverse momenta range from 21 GeV to 2.5 TeV

Inclusive jet measurement @ 8 TeV

Inclusive jet measurement @ 8 TeV

Dominant uncertainties: <u>Data</u>: Jet Energy Scale (1-4% central |y| ; 6-45% outer |y|) Luminosity 2.6%

Theory: Scale (5-10% central |y|, up to 40% outer |y|) PDF(10-50% central |y|, up to 100% outer |y|)

impact on PDFs & α_s ----> See K.Lipka's talk

Inclusive jets : Ratio of 2.76 / 8 TeV

• Ratio of cross-sections at different energies may show a better sensitivity to PDFs.

Ratios are mainly dominated by PDF uncertainty (theory)!

Triple-Differential Dijet Measurement

• Measurement @ 8TeV, $L = 19.7 \text{ fb}^{-1}$, anti-k_T with R=0.7

Event selection :

- Two leading jet with :
 - $-|y_{1,2}| < 3.0$
 - $p_{T1,2} > 50 \text{ GeV}$
- $E_T^{miss} / \Sigma E_T < 0.3$

•
$$p_{T,avg} = (p_{T1} + p_{T2})/2$$

• $y_b = \frac{1}{2}|y_1 + y_2|$
• $y^* = \frac{1}{2}|y_1 - y_2|$

Triple-Differential Dijet Measurement

8

• Measurement @ 8TeV, $L = 19.7 \text{ fb}^{-1}$, anti-k_T with R=0.7

•
$$p_{T,avg} = (p_{T1} + p_{T2})/2$$

• $y_b = \frac{1}{2}|y_1 + y_2|$
• $y^* = \frac{1}{2}|y_1 - y_2|$

Opposite side events $x_1 \approx x_2$

Same side events (Dijet boost!) $x_1 \gg x_2$

Triple-Differential Dijet Measurement @ 8TeV

P_{T,avg} spectrum of all y_b / y^{*} bins
Theory :

- NLOJET++ with NNPDF3.0
- Corrected for NP and EW

Dominant systematics :
Data:
JES : 5-10%
Statistical uncert. :1-15%
Luminosity : 2.6%
Theory :
PDF : 4-50%
Scale : 5-20%

Triple-Differential Dijet Measurement @ 8TeV

- Ratio to NLO x NP with NNPDF3.0
- Black dots : Data points with statistical uncertainty
- Yellow bands : Total systematic uncertainty
- Blueish bands : Total theory uncertainty (PDF, Scale and NP)

Triple-Differential Dijet Measurement in Detail

11

Data are well described in most of the phase spaces but some difference in at high p_{Tavg} and y_b, which we need to to understand!

Poor knowledge of PDFs!!

impact on PDFs & α_s ------ See K.Lipka's talk

Inclusive multijet measurement @ 8 TeV

- Measurement @ 8TeV, $L = 19.7 \text{ fb}^{-1}$, anti-k_T with R=0.7
- \bullet Inclusive 2-jet and 3-jet event cross sections as a function of $H_{T,2}$ / 2

 $\frac{d\sigma}{d(H_{T,2}/2)} = \frac{1}{\epsilon L_{\text{int}}} \frac{N_{\text{event}}}{\Delta(H_{T,2}/2)}$

$$H_{T,2}/2 = \frac{1}{2}(p_{T,1} + p_{T,2})$$

Inclusive multijet measurement @ 8 TeV

- Measurement @ 8TeV, $L = 19.7 \text{ fb}^{-1}$, anti-k_T with R=0.7
- \bullet Inclusive 2-jet and 3-jet event cross sections as a function of $H_{T,2}$ / 2

$$\frac{d\sigma}{d(H_{T,2}/2)} = \frac{1}{\epsilon L_{\text{int}}} \frac{N_{\text{event}}}{\Delta(H_{T,2}/2)}$$

$$R_{mn} = \frac{\sigma_{\text{m-jet}}}{\sigma_{\text{n-jet}}} \sim \alpha_S^{m-n}; \ m > n$$

some systematics cancels!

R₃₂ is sensitive to αs See K.Lipka's talk

Summary

✓ Measurement of multi-differential jet cross-sections over a wide range in transverse momenta from inclusive jets to multi-jet final states is presented.
 ✓ These text-book measurements are sensitive to proton structure and strong coupling αs

Backup Slides