Measurements of the production of jets in association with a W or Z boson with the ATLAS detector

Nataliia Kondrashova* on behalf of the ATLAS Collaboration

*Shanghai Jiao Tong University

25th International Workshop on Deep Inelastic Scattering and Related Topics Birmingham, 3 - 7 April 2017

Introduction

W/Z+jet measurements:

- Powerful test of perturbative quantum chromodynamics (pQCD) and electroweak predictions
- Backgrounds for Higgs studies and beyond SM searches
 → Monte Carlo (MC) prediction must be tuned and validated using data

In this talk:

- Measurements of the production cross section of a Z boson in association with jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (3.16 fb⁻¹) arXiv:1702.05725
- Measurement of W boson angular distributions in events with high transverse momentum jets at $\sqrt{s} = 8$ TeV using the ATLAS detector (20.3 fb⁻¹) Phys. Lett. B 765 (2017) 132
- New! Measurement of the ${\bf k}_T$ splitting scales in Z \rightarrow 11 events in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector (20.2 fb^{-1})

Z + jets @ 13 TeV

・ロト ・聞き ・ モン・ キヨン

- Sensitive probe of different MC approaches
- Z \rightarrow ee and Z $\rightarrow \mu\mu$ combined for higher precision
- Differential cross sections measured for N_{jets}, $\frac{N_{jets}+1}{N_{jets}}$, p_T^{jet} , $|y_{jet}|$, H_T , m_{jj} , $\Delta\phi_{jj}$
- Comparison with LO and NLO ME MC generators, NLO and N_{jetti} NNLO fixed-order calculations
- LO Alpgen + Py6 and NLO Sherpa 2.2 and MG5_aMC + Py8 do not describe well high jet multiplicities, where large jet fraction is from parton showers (PS)

- LO MG5_aMC + Py8 CKKWL models too hard p_T^{jet} spectrum for $p_T^{jet} > 200 \text{ GeV}$ \rightarrow dynamic μ_F and μ_R used in the generation not appropriate for the full p_T^{jet} range
- LO Alpgen + Py6 and NLO BlackHat + Sherpa, Sherpa 2.2 and MG5_aMC + Py8 FxFx are in agreement with data within the systematics over the full p_T^{jet} range
- N_{jetti} NNLO models well the p_T^{jet} spectrum for $Z + \ge 1$ jet

 H_T - scalar sum of the p_T of all visible objects

- common variable in beyond SM searches for heavy particles
- often used as scale variable in pQCD
- BlackHat + Sherpa underestimates data in $H_T > 300$ GeV (missing higher orders)
- N_{jetti} NNLO recovers agreement by adding higher orders in pQCD

Collinear W + jets @ 8 TeV

イロト イポト イヨト イヨト

Probe real W emission by studying the region of small angular separation between W and jet $% \left({{{\rm{S}}_{\rm{s}}}} \right)$

- Muon and initial W directions are highly correlated \Rightarrow measure $\sigma_{W(\rightarrow \mu\nu)+jets}$ as a function of $\Delta R(\mu, closest jet)$
- $\bullet~$ Leading jet $p_T > 500~GeV \rightarrow$ enriches collinear production of W + jets
- $\bullet\,$ Normalization correction of ${\tt W}+\,{\tt jets},\,$ multijet, $t\bar{t}$ and ${\tt Z}+\,{\tt jets}$ in data control regions

- LO ME Alpgen+Pythia describes shape well but overestimates total cross section; Pythia8 (incl. dijet+weak shower) underestimates data at low ΔR(μ, closest jet)
- NLO QCD+EW Sherpa+OpenLoops and N_{jetti} NNLO agree with data within uncertainties

within uncertainties

Nataliia Kondrashova (SJTU)

- Fraction of collinear events increases with increasing leading jet p_T \rightarrow also with centre of mass energy
- Real W emission important for W + jets measurements at high p_T, vector boson scattering, QCD multijets at high m_{jj}
- High potential to mimic highly Lorentz-boosted top quark \rightarrow important for new physics searches

Nataliia Kondrashova (SJTU)

DIS 2017 11 / 33

∃ 990

イロト イポト イヨト イヨト

$\mathbf{k}_{\mathbf{T}}$ algorithm:

- $$\begin{split} \mathbf{d}_{\mathtt{i}\mathtt{j}} &= \mathtt{min}(p_{\mathtt{T},\mathtt{i}}^2,p_{\mathtt{T},\mathtt{j}}^2) \times \frac{\Delta \mathtt{R}_{\mathtt{i}\mathtt{j}}^2}{\mathtt{R}^2}, \, \mathbf{d}_{\mathtt{i}\mathtt{B}} = p_{\mathtt{T},\mathtt{i}}^2, \\ \Delta \mathtt{R}^2 &= (\mathtt{y}_\mathtt{i} \mathtt{y}_\mathtt{j})^2 + (\phi_\mathtt{i} \phi_\mathtt{j})^2 \end{split}$$
 - $\bullet~d_{\texttt{ij}} < d_{\texttt{iB}}:$ combine <code>i</code> and <code>j</code>
 - $\bullet~d_{\texttt{ij}} > d_{\texttt{iB}}$: remove <code>i</code>, call it jet

Iterate until input collection is empty

(日) (周) (日) (日)

- k_T recombination approximates QCD evolution
- Splitting scale $d_k = min(d_{ij}, d_{ib})$: number of input momenta drops from k + 1 to k
 - d₀ is a leading jet p_T
 - higher orders probe QCD evolution

- Measured differential cross sections of Z \to 11, 1 = e, μ , as a function of splitting scales $\sqrt{d_k},~k=0...7$
 - sensitive to hard perturbative modelling at high scales, to soft hadronic activity at low scales
- 71 < m_l1 < 111 GeV, $p_{\rm T}^{\rm lep}>$ 25 GeV, $|\eta_{\rm lep}|<$ 2.5
- Splitting scales $\sqrt{d_k}$ constructed from ID tracks with $p_T>400$ MeV ("charged-only")
- Jet-radius parameters R = 0.4 and R = 1.0 are used

- Compared to Sherpa (MEPS@NLO) and DY@NNLO+Powheg+Pythia8 (NNLOPS)
- Both predictions underestimate data in the peak region of the lower-order splitting scales
- In hard perturbative region NNLOPS overestimates cross section, MEPS@NLO provides good description

- NNLOPS description improved significantly in the soft region for the higher-order splitting scales
- Data can provide new input for non-perturbative parameters tuning

15 / 33

- Results extrapolated to "*charged+neutral*" for the benefit of theoretical calculations
- Uncertainty increase for the extrapolated results

- ATLAS data provide useful inputs for Monte Carlo tuning
 - $\mathbf{Z} + \mathbf{jets}$ **@ 13 TeV** powerful test of pQCD
 - Collinear W + jets @ 8 TeV probe of real W emission, important for W + jets measurements at high p_T, vector boson scattering, QCD multijets at high m₁₁
 - ▶ k_T splittings in Z + jets @ 8 TeV sensitive to the hard perturbative modelling as well as soft hadronic activity, complementary to standard jet measurements
- A lot of interesting Run 1 and Run 2 results are expected soon

(日) (同) (日) (日) (日)

Z + jets @ 13 TeV

Nataliia Kondrashova (SJTU)

 ・
 こ
 つ
 へ

 DIS 2017
 18 / 33

・ロト ・聞き ・ モン・ キヨン

Nataliia Kondrashova (SJTU)

DIS 2017 19 / 33

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Nataliia Kondrashova (SJTU)

DIS 2017 22 / 33

-

DIS 2017 23 / 33

(日) (周) (日) (日)

Nataliia Kondrashova (SJTU)

DIS 2017 25 / 33

Relative uncertainty in $\sigma(Z(\to \ell^+ \ell^-) + \ge N_{jets})$ [%]									
	$Z \rightarrow e^+e^-$								
Systematic source	$+ \ge 0$ jet	$+ \ge 1$ jet	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	$+ \ge 5$ jets	$+ \ge 6$ jets	$+ \ge 7$ jets	
Electron trigger	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	
Electron selection	1.2	1.6	1.8	1.9	2.3	2.7	2.9	3.8	
Jet energy scale	< 0.1	6.6	9.2	11.5	13.8	17.3	20.6	23.7	
Jet energy resolution	< 0.1	3.7	3.7	4.4	5.3	5.2	6.2	7.3	
Jet vertex tagger	< 0.1	1.3	2.1	2.8	3.6	4.5	5.5	6.3	
Pile-up	0.4	0.2	0.1	0.2	0.2	0.1	0.4	0.8	
Luminosity	2.1	2.1	2.2	2.3	2.4	2.5	2.6	2.8	
Unfolding	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.2	
Background	0.1	0.3	0.6	1.0	1.6	3.3	6.0	11.6	
Syst. uncertainty	3.9	8.7	11.0	13.4	15.9	19.5	23.6	28.7	
Stat. uncertainty	0.1	0.2	0.5	0.9	1.9	3.7	7.7	15.9	
	$Z \rightarrow \mu^+ \mu^-$								
Systematic source	$+ \ge 0$ jet	$+ \ge 1$ jet	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	$+ \ge 5$ jets	$+ \ge 6$ jets	$+ \ge 7$ jets	
Muon trigger	0.4	0.5	0.4	0.5	0.4	0.5	0.9	0.6	
Muon selection	0.8	0.9	1.0	1.0	1.0	1.5	4.2	16.6	
Jet energy scale	< 0.1	6.8	9.1	11.9	14.0	17.0	20.9	23.7	
Jet energy resolution	< 0.1	3.6	3.6	4.1	5.0	5.9	6.2	9.3	
Jet vertex tagger	< 0.1	1.3	2.1	3.1	3.6	4.4	5.6	6.6	
Pile-up	0.4	0.1	0.0	0.3	0.5	0.1	0.4	0.9	
Luminosity	2.1	2.1	2.2	2.3	2.4	2.5	2.6	2.7	
Unfolding	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.2	
Background	0.2	0.4	0.6	0.9	1.7	4.0	7.4	12.9	
Syst. uncertainty	3.8	8.7	10.8	13.6	16.0	19.41	24.6	36.3	
Stat. uncertainty	0.1	0.2	0.4	0.8	1.7	3.4	7.2	16.3	

Collinear W + jets @ 8 TeV

・ロト ・聞き ・ モン・ キヨン

Systematic Source	$0.2 < \Delta R < 2.4$	$\Delta R > 2.4$	Inclusive
Scaling of dijets to data	0.4%	0.1%	0.3%
Scaling of $t\bar{t}$ to data	0.6%	0.2%	0.5%
Scaling of Z + jets to data	0.6%	0.3%	0.5%
Jet energy scale	4.6%	5.8%	5.0%
b-tagging efficiency	3.7%	1.2%	2.9%
Data/MC disagreement for dijets	0.9%	0.6%	0.8%
Data/MC disagreement for $t\bar{t}$	1.2%	0.4%	1.0%
Data/MC disagreement for $Z + jets$	0.6%	1.5%	0.9%
Diboson background estimate	2.2%	0.1%	1.5%
Unfolding dependence on prior	1.1%	1.8%	1.3%
Muon momentum scale and resolution	0.0%	0.1%	0.1%
Muon reconstruction efficiency	0.4%	0.4%	0.4%
Muon trigger efficiency	2.0%	1.9%	1.9%
Jet energy resolution	0.6%	0.8%	0.6%
MC background statistical	2.4%	1.8%	2.3%
MC response statistical	1.7%	2.2%	1.9%
Total systematic (excluding luminosity)	7.6%	7.4%	7.3%
Luminosity	1.9%	2.0%	2.0%
Data statistical	2.7%	3.6%	2.2%

イロト イヨト イヨト イヨト

Nataliia Kondrashova (SJTU)

DIS 2017 31 / 33

∃ 990

イロト イポト イヨト イヨト

(SJTU)

Nataliia Kondrashova (SJTU)

DIS 2017 33 / 33

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A