

Top-quark mass extraction from top pair differential distributions

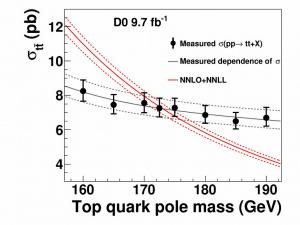
David Heymes

DIS 2017, Birmingham

dheymes@hep.phy.cam.ac.uk

Cavendish Laboratory - HEP Group

Top-Quark mass measurements at Tevatron and LHC

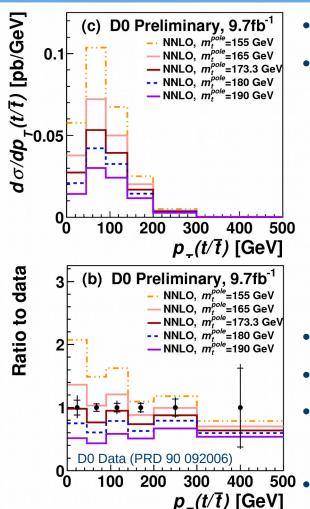

- Direct techniques (extraction of m_{top}(generator))
 - Matrix-Element method
 - Template Method, etc.
 - Combined value

 $m_{
m top} = 173.34 \pm 0.27 \pm 0.71 \,\, {
m GeV}$ do, CDF, Atlas,CMS (PDG)

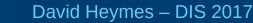
- \rightarrow Difference of 1 GeV m_{top}(pole) and m_{top}(generator)
- Pole-mass extractions: m_{top} = m_{top}(pole) (indirect)
 - Total cross section extraction using NNLO+NNLL

$$m_{\rm top}^{\rm pole} = 174.2 \pm 1.4 \,\,{\rm GeV}$$

Here: Extraction from differential distributions

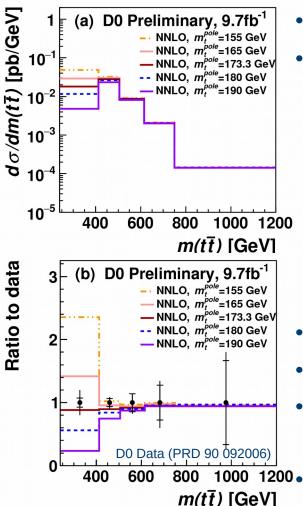


D0,Czakon, Fielder, Heymes, Mitov 2016 D0 Note 6473-CONF



Mass sensitivity of top-pair differential distributions

D0,Czakon, Fielder, Heymes, Mitov 2016



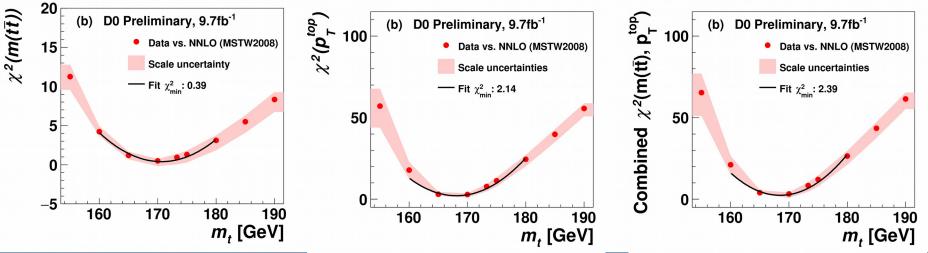
- Idea: Extract m_{top} from differential distributions (m_{tt} , p_T)
- NNLO Calculation based on *Czakon, Fielder, Heymes, Mitov 2016*
 - Fixed scales $\mu_F = \mu_R = m_{top}$
 - Theory (Scale) Uncertainty: Independent variation by 2
 < 5 % in the bulk of the distribution
 - < 10 % in the tail bin
 - MSTW2008, CT10, NNPDF23, HERAPDF15 pdf error small
- Calculation for 9 different values of m_{top}
- Highest sensitivity in the bulk of the distributions
- No/less sensitivity in the tails
- Data: D0 Run II Phys. Rev. D 90 2014

Mass sensitivity of top-pair differential distributions

D0,Czakon, Fielder, Heymes, Mitov 2016

- Idea: Extract m_{top} from differential distributions (m_{tt} , p_{T})
- NNLO Calculation based on Czakon, Fielder, Heymes, Mitov 2016
 - Fixed scales $\mu_F = \mu_R = m_{top}$
 - Theory (Scale) Uncertainty: Independent variation by 2
 < 5 % in the bulk of the distribution
 < 10 % in the tail bin
 - MSTW2008, CT10, NNPDF23, HERAPDF15 pdf error small
- Calculation for 9 different values of m_{top}
- Highest sensitivity in the bulk of the distributions
- No/less sensitivity in the tails
- Data: D0 Run II Phys. Rev. D 90 2014

David Heymes – DIS 2017


Top-mass extraction procedure

D0,Czakon, Fielder, Heymes, Mitov 2016

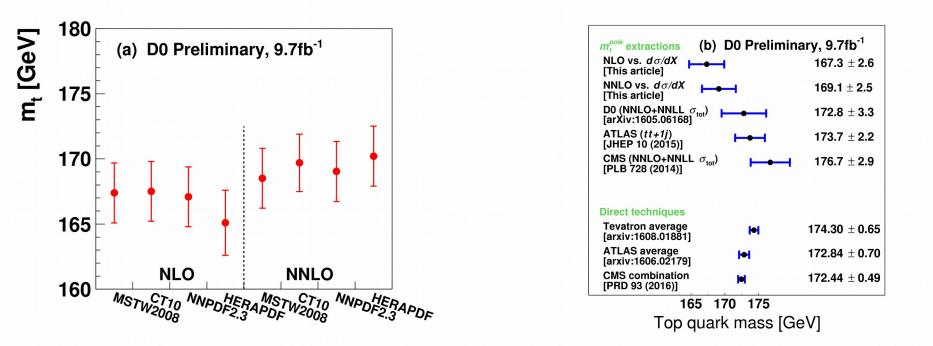
• Minimize distance between theoretical calculation and unfolded differential data in each bin i,j: $\gamma^2(m, -) - \sum (x^{\text{true}} - x^{\text{theo}}) V^{-1}(x^{\text{true}} - x^{\text{theo}})$

$$\chi^2(m_{\text{top}}) = \sum_{i,j} (x_i^{\text{true}} - x_i^{\text{theo}}) \boldsymbol{V_{i,j}^{-1}} (x_j^{\text{true}} - x_j^{\text{theo}})$$

- Statistical, systematic uncertainties and bin correlations in cov. matrix $|V_{i,j}^{-1}|$
- · Parabolic fit to find minimum, restricted to values around minimum
- For different scale choices \rightarrow shaded area
- Total uncertainty obtained by $\Delta\chi^2 = 1$

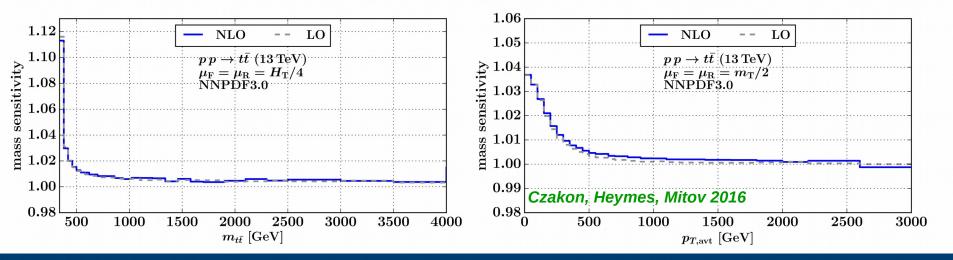
Results

D0,Czakon, Fielder, Heymes, Mitov 2016

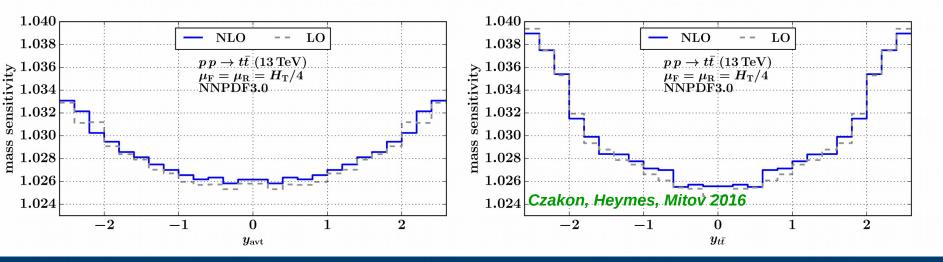

 $m_{\rm top}^{\rm pole} = 169.1 \pm 2.5 (\text{tot.}) [\pm 2.2 (\text{exp.}) \pm 0.8 (\text{scale}) \pm 1.2 (\text{PDF})] \,\text{GeV}$

- Uncertainties:
 - Exp. : set theory uncertainty to 0 for the extraction
 - Scale.: set experimental uncertainty to zero for the extraction with different scale choices
 - Pdf. : Combine calculation for MSTW2008, CT10 and NNPDF23 and assign error
- $P_{T_{-}}$ distribution dominates the mass extraction
- Correlation between distribution is taken into account
- Normalized distributions have less systematic uncertainties, but sensitivity to the top mass is lower → larger uncertainties on the extraction

Results

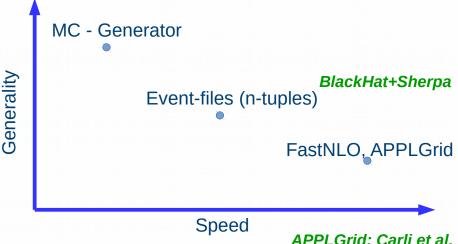

- NLO tends to gives smaller results, because of lower cross section
- m_{top} tends to be lower than in total-cross section extractions using NNLO+NNLL
 - Dynamic scales alleviate difference between NNLO and NNLO+NNLL

Mass sensitivity at the LHC


- Procedure can be directly extended to the LHC
 - What about other (theoretical) uncertainties (a_s , pdfs) ? \rightarrow simultaneous extraction?
- Mass sensitivity of 1D distributions (What about 2D distributions?)
 - Dynamical scales \rightarrow Difference between NNLO and NNLO+NNLL is numerically small

Mass sensitivity at the LHC

- Procedure can be directly extended to the LHC
 - What about other (theoretical) uncertainties (a_s , pdfs) ? \rightarrow simultaneous extraction?
- Mass sensitivity of 1D distributions (What about 2D distributions?)
 - Dynamical scales \rightarrow Difference between NNLO and NNLO+NNLL is numerically small



FastNLO tables for top-quark pairs at NNLO

How to store/distribute (N)NLO calculations?

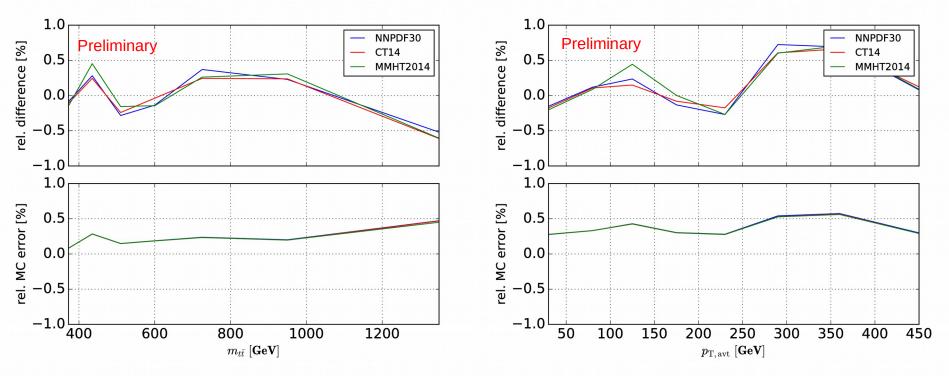
- O(10000) CPU hours for single NNLO calculation
- Observables, scales, masses, E_{cms},
 PDFs are fixed once calculation is done
 - \rightarrow More flexible storage format required


APPLGrid: Carli et al. FastNLO: Britzger, Kluge, Rabbertz, Wobisch

- FastNLO interface to NNLO event generator STRIPPER
- PDF and a_s independent storage \rightarrow fast recalculation of distributions
- Useful for pdf extractions, a_s variation, etc. *Czakon, Hartland, Mitov, Nocera, Rojo 2016.*
- Example: NNLO predictions for LHC at 8TeV, differential measurement in the lepton+jets channel
 - Tables for the central (dynamical) scale choice and main distributions: m_{tt}, p_{Tavt}, y_{tt}, y_{avt}

FastNLO interface to Stripper at NNLO – Validation 1

- Accuracy of the fastNLO Interpolation at NNLO
 - Same sample of MC points for direct calculation and filling of the table is used
 - Interpolation error < 0.1 %, much smaller than MC error of NNLO calculation < 0.5 %



David Heymes – DIS 2017

FastNLO interface to Stripper – Validation 2

- Numerical precision of the fastNLO table at NNLO
 - Comparison of an independent direct calculation and results obtained from fastNLO table
 - Statistical uncertainty of NNLO prediction < 0.5 %

David Heymes – DIS 2017

Summary and Outlook

 Top pole mass extraction using differential distributions for top-quark pair production at the Tevatron

 $m_{\rm top}^{\rm pole} = 169.1 \pm 2.5 (\text{tot.}) [\pm 2.2 (\text{exp.}) \pm 0.8 (\text{scale}) \pm 1.2 (\text{PDF})] \text{ GeV}$

- Uncertainties comparable to other indirect extraction methods (total cross section extraction)
- Method can be applied at the LHC as well
- However: Predictions are computational expensive
- FastNLO interfaced to NNLO event generator STRIPPER
 - Pdf independent way of storing NNLO results
 - FastNLO tables for LHC 8TeV top-pair measurements are available
 - \rightarrow pdf extractions, a_s variation, ...
- Future: Event files for NNLO results (?), Mass extraction at the LHC

