Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
•0	000	00	000000		
Title					

EW corrections on top-quark pair production: the impact of the photon PDF

Ioannis Tsinikos

Centre for Cosmology, Particle Physics and Phenomenology (CP3) Université Catholique de Louvain (UCLouvain)

arXiv:1606.01915, Davide Pagani, IT, Marco Zaro

arXiv:17xx.xxxx, Michal Czakon, David Heymes, Alexander Mitov, Davide Pagani, IT, Marco Zaro

Birmingham, 4 April 2017

DIS 2017

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
0	000	00	000000		

Contents

Introduction

- Motivation
- Different PDF sets
- Calculation framework
- Differential distributions
 Results at 13 TeV
- 3 Combining NNLO QCD + NLO EW
 - Calculation framework
 - Results at 13 TeV
 - Results at 8 TeV

4 Conclusions

5 Additional slides

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	● ○○	00	000000		

Motivation

- EW corrections
 - Tension between theory and data at high $p_T(t)$ region at 8 TeV
 - Theory uncertainties decrease \rightarrow Relevance of EW corrections increase
 - Experimental uncertainties will further decrease at LHC13

- $t\bar{t}$ process enters many LHC analyses as signal or background \rightarrow NNLO QCD and NLO EW predictions are necessary for $t\bar{t}$ production

Weak: Beenakker et al., Nu.Ph.B.411(1994), Kuhn et al., hep-ph/0610335, arXiv:1305.5773, Bernreuther et al., hep-ph/0508091, Campbell et al., arXiv:1608.03356; QED+gγ LO: Hollik et al., arXiv:0708.1697; FB asymmetry: Hollik et al., arXiv:1107.2606, Kuhn et al., arXiv:1109.6830, Manohar et al., arXiv:1201.3926, Bernreuther et al., arXiv:1205.6580; NLO+EW+decay (NWA): Bernreuther et al., arXiv:1003.3926; EW to e⁺μ⁻ννbb̄: Denner et al., arXiv:1607.05571

Photon-induced contributions

- The (negative) Sudakov suppression is compensated by the (positive) photon-induced contributions

PDF sets including $\gamma(x, Q)$: MRST2004QED: *Martin et al. '04*, NNPDF2.3QED: *Ball et al. '13*, CT14QED(inc): Schmidt et al. '16, NNPDF3.0QED: Bertone, Carrazza '16, LUXqed: Manohar et al. '16, MMHTQED (in progress), additional Studies: Harland-Lang, Khoze, Ryskin '16

Ioannis Tsinikos

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Different PDF sets

Different assumptions for all PDF sets

- At low Q = 3 GeV there is a similar behaviour
- At high Q values and low x, the NNPDF2.3QED is different due to different DGLAP QCD and QED running (not relevant for tt)

• At high
$$Q$$
 values and large $x \to \begin{cases} \mathsf{NNPDF2.3QED}, \text{ large } \gamma(x, Q) \\ \mathsf{CT14QED}, \text{ LUXqed}, \text{ small } \gamma(x, Q) \end{cases}$

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Calculation framework

NLO QCD+EW corrections to $t\bar{t}$ production (MADGRAPH5_AMC@NLO)

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Calculation framework

NLO QCD+EW corrections to $t\bar{t}$ production (MADGRAPH5_AMC@NLO)

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Calculation framework

NLO QCD+EW corrections to $t\bar{t}$ production (MADGRAPH5_AMC@NLO)

$$\begin{split} m_t &= 173.3 \; \text{GeV} \,, \quad m_H = 125.09 \; \text{GeV} \,, \\ m_W &= 80.385 \; \text{GeV} \,, \quad m_Z = 91.1876 \; \text{GeV} \,, \\ G_\mu &= 1.1663787 \cdot 10^{-5} \; \text{GeV}^{-2} \end{split}$$

- PDF sets considered
 - Main results \rightarrow NNPDF2.3QED, NNPDF2.3QED (no $\gamma(x, Q)$)
 - Comparison with CT14QED

Ioannis Tsinikos

EW corrections on top-quark pair production: the impact of the photon PDF

 $\mu = \frac{H_T}{2} = \frac{1}{2} \sum m_{T,i}$

Results at 13 TeV

- NNPDF2.3QED: Photon PDF effect is mostly due to LO EW contribution
- NNPDF2.3QED: Large cancellations between Sudakov logs and photon-induced contributions
- photon PDF impact \longrightarrow large in NNPDF2.3QED, negligible in CT14QED

Ioannis Tsinikos

Results at 13 TeV

- $\bullet~$ NNPDF2.3QED: \sim 5% effect of photon PDF at large rapidity regions, which are reachable experimentally
- CT14QED \leftrightarrow NNPDF2.3QED (no $\gamma(x, Q)$)
- CT14QED and NNPDF2.3QED in agreement within uncertainties

Ioannis Tsinikos

Outline Introduction

Differential distributions

8 / 14

Calculation framework

$t\bar{t}$ distributions at NNLO QCD+NLO EW accuracy

in collaboration with

Michal Czakon, David Heymes, Alex Mitov, Davide Pagani, Marco Zaro

- Scale choice based on arXiv:1606.03350 (Czakon, Heymes, Mitov)
- ${\hfill}$ Fastest convergence ${\hfill}$ Choose the scale that minimizes the NLO and NNLO corrections in an observable by observable basis

$$\mu = \begin{cases} m_T/2 \text{ for } p_{T,avt} \\ H_T/4 \text{ for } m(t\bar{t}), y_{avt}, y(t\bar{t}) \end{cases}$$

- PDF sets considered
 - Main results \rightarrow NNPDF3.0QED, LUXqed

Outline Introduction

Differential distributions

Combining NNLO QCD + NLO EW Conclusions 00000

Additional slides

Calculation framework

$t\bar{t}$ distributions at NNLO QCD+NLO EW accuracy

Combining NNLO QCD + NLO EW Conclusions

sions Additional slides

9 / 14

Calculation framework

$t\bar{t}$ distributions at NNLO QCD+NLO EW accuracy

Outline Differential distributions Combining NNLO QCD + NLO EW Conclusions Introduction 000000

Additional slides

Calculation framework

$t\bar{t}$ distributions at NNLO QCD+NLO EW accuracy

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	00000		
Results at	t 13 TeV				

NNPDF3.0QED vs LUXged

- photon PDF impact \longrightarrow large in NNPDF3.0QED, negligible in LUXqed
- LUXqed \leftrightarrow NNPDF3.0QED (no $\gamma(x, Q)$)
- LUXqed and NNPDF3.0QED in agreement within uncertainties

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		
Results at	13 TeV				

13 TeV

- Both in the LUXqed and NNPDF3.0QED PDF sets the EW correction is small
- PDF uncertainties become dominant at high $m(t\bar{t})$ region

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Results at 13 TeV

13 TeV

- NNLO QCD corrections reduce the scale dependence significantly
- In the LUXqed PDF set the total result deviates from the pure QCD one already at the 1 TeV region

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	00000		
Results at	8 TeV				

8 TeV

√s ↓ ⇒ Bjorken x's ↑ ⇒ More sentitive to photon-induced contribitions
 NNPDF3.0QED: ~ 15% effect of photon PDF at large rapidity regions

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Conclusions

PDF sets

- NNPDFQED \rightarrow Large impact of photon-induced contributions accompanied with large uncertainties

- CT14QED, LUXqed \rightarrow Negligible impact of photon-induced contributions in $t\bar{t}$ distributions

8, 13 TeV

- 8 TeV data $(y(t), y(t\bar{t}))$ can be sensitive to the impact of the photon-induced contributions at experimentally reachable regions (NNPDFQED)

- At 13 TeV, in p_T distributions EW corrections induce significant deviations w.r.t. the pure QCD ones (LUXqed)

- NNLO QCD are necessary in order to reduce the scale dependence

- Further research
 - Additive vs multiplicative approach
 - $t\bar{t}$ asymmetry at NNLO QCD+NLO EW at 8 TeV

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW Conclusions Additional :	slides
Theor	y vs data t	ension	CMS 10.7 ft ⁻¹ of $\sqrt{2}$ = 9. To V	
7	Crakon, 1	leymes, Nitov (2015)		
		NLO	$>$ ⁸ e/ μ + Jets • Data	
10 ⁻³		L0	0 7 - MadGraph+Pythia6 - MC@NLO+Herwig6	
× 5			bl+ 6 Powheg+Pythia6	
9×4	<u>t</u>		이 상 5는 ······ Approx. NNLO	

• The p_T spectrum in data for top quarks is softer than expected

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

The photon PDF

- NNPDF2.3QED
 - No assumption for the $\gamma(x, Q^0)$ functional form
 - Different scales for QCD/QED evolutions
- CT14QED
 - Uses an ansatz like MRST2004 with one free parameter
 - The momentum fraction carried by the photon is constrained to be $\leq 0.14\%$ at 90% CL
 - A set including the elastic photon contribution is also provided (CT14QEDinc)
- NNPDF3.0QED
 - Simultaneous evolution of QCD/QED is implemented (also in APFEL_NN23), which changes the low x behaviour, but with no effect in $t\bar{t}$ phenomenology
- LUXqed
 - Match the Master formula with the Parton model formula $\sigma \to \text{extract } \gamma(x, Q^0)$
 - Splitting functions at $O(\alpha + \alpha_s \alpha)$

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

The $g\gamma$ Luminosity

- LUXqed lies very close to CT14QED
- Effects due to the different evolution in NNPDF2.3QED are not visible

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Parton Luminosities and scale choice

• In both dynamical and fixed scales the $g\gamma$ luminosity is suppressed with respect to the gg one at the low M region

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Representative Feynman diagrams (QCD)

• LO QCD (α_s^2)

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Representative Feynman diagrams (EW)

• NLO EW ($\alpha_s^2 \alpha$)

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Representative Feynman diagrams (sub EW) • LO3 (α^2)

Ioannis Tsinikos

• At 100 TeV $t\bar{t}$ differential distributions are not sensitive to photon-induced contributions

•
$$\sqrt{s} \uparrow \Longrightarrow$$
 Bjorken x's \downarrow

10⁻⁵

0.5

2

2

0.3

-0.3

LO EW/LO OCD

D+EW)/I O O

10000

15000

• The effect of the photon-induced contributions becomes visible only at very high $m(t\bar{t})$ (and $p_T(t)$) regions

30000

• Larger effects are expected at 8 TeV, where already we have data

25000

NLO EW/LO QCD

Ioannis Tsinikos

10-5

0.5

2

2

0.3

-0.3

EW/LO OCD

W/LO OCD: PDF

10000

CD+EW)/LO QCD; scale und

NI O QCD/LO QCD

15000

20000

m_{T.cut} [GeV]

EW corrections on top-quark pair production: the impact of the photon PDF

30000

NLO EW/LO QCD

25000

20000

m_{T,cut} [GeV]

Dutline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

LHC13, FCC100, σ_{gg}/σ_T vs p_T

• Normalised $(1/\sigma)$ rapidity distributions $\rightarrow \text{Exp.}$ errors reduce at few % level.

- Large PDF uncertainties and visible impact of photon PDF (NNPDF2.3QED)
- Can be used for constraining the photon PDF (NNPDF2.3QED)

Ioannis Tsinikos

- In p_T distributions the impact of the photon PDF is larger at the tail
- Sudakov logs vs $\gamma(x, Q)$ compensation depends on the scale definition
- For 13 TeV comparisons between theory and experiment EW corrections and photon-induced contributions need to be taken into account
- $\,$ $\,$ Scale uncertainty still large at NLO QCD \rightarrow NNLO QCD needed

Ioannis Tsinikos

Outline	Introduction	Differential distributions	Combining NNLO QCD + NLO EW	Conclusions	Additional slides
00	000	00	000000		

Multiplicative approaches

Ioannis Tsinikos