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Deep-inelastic scattering
Neutral current deep-inelastic scattering

Process:    ep → e'X
Electron or positron

Kinematic variables
● Virtuality of exchanged boson Q2

● Inelasticity

NC and CC DIS cross sections (HERA-II) are mandatory ingredients for PDF fits
● Only one proton involved 

-> lepton directly probes (charged) constitutents of proton

Gluon is mainly indirectly constrained by DGLAP and sum-rules
-> Measurement of ep -> 2j+X will allow direct access of gluon content
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Jet production in ep scattering

Jet measurements are performed in Breit reference frame
● Exchanged virtual boson collides 'head-on' with parton from proton ('brick-wall' frame)

Jet measurements directly sensitive 
● to αs already at leading-order
● to gluon content of proton

Trijet measurement
● More than three jets with significant transverse momenta
● Leading-order already at O(αs

2)

Boson-gluon fusion QCD Compton Trijet leading-order

Breit frame



4Daniel Britzger – H1 JetsDIS17, April 2017

The HERA ep collider

HERA ep collider in Hamburg
● Data taking periods

● HERA I: 1994 – 2000 
● HERA II:  2003 – 2007

● Delivered integrated luminosity ~ 0.5 fb-1

HERA-II period
● Electron and positron runs
● √s = 319 GeV

● Ee = 27.6 GeV
● Ep = 920 GeV

● Analysed int. Luminosity: L = 290 pb-1

HERA ep collider Integrated luminosity

H1
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H1 Experiment at HERA

H1 multi-purpose detector
● Asymmetric design
● Trackers: 

● silicon tracker, jet chambers, 
proportional chambers, ...

● Calorimeters
● Liquid Argon sampling calorimeter
● SpaCal: scintillating fiber calorimeter

● Superconducting magnet: 1.15T
● Muon detectors

Excellent experimental precision
● Overconstrained system in NC DIS
● Electron measurement: 0.5 – 1% scale uncertainty
● Jet energy scale: 1%
● Luminosity:  2.5%

Drawing of the 
H1 experiment
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Analysis strategy and kinematic range
Data must be corrected for detector effects

● Kinematic migrations
● Acceptance and efficiency effects

Regularised unfolding
● For accurate descripton of migrations

consider an 'extended phase space' 

● Dijets/trijets: asymmetric cuts on pT
jet1 & pT

jet2 avoid IR sensitive regions in NNLO

Extended phase space for unfolding Cross section phase space

NC DIS Q2 > 3 GeV2 5.5 < Q2 < 80 GeV2

y > 0.08 0.2 < y < 0.6

(inclusive) jets P
T

jet > 3 GeV P
T

jet > 4.5 GeV

-1.5 < ηlab < 2.75 -1.0 < ηlab < 2.5

Dijet and trijet P
T

jet > 4 GeV

<P
T

jet> > 3 GeV <P
T

jet> > 5 [5.5] GeV 

Typical event display

e±
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Regularised unfolding
Regularised unfolding using TUnfold 

● Calculate unfolded distribution x by minimising

● Linear analytic solution 
● Linear error propagation
● Statistical correlations are considered in Vy

Simultaneous unfolding of
Inclusive jet, Dijet, Trijet, NC DIS

● Statistical correlations are considered
● Matrix constituted from O(106) entries

● Two generators used
● Difference between the two -> model uncertainty

● Up to 6 variables considered for migrations
● 'detector-level fake jets' (or events) are constrained 

with NC DIS data 
EPJ C75 (2015) 2 

χ
2
(x , τ)=( y−Ax)T V y

−1
( y−Ax )+ τ LT L

JINST 7 (2012) T10003x Hadron level
y Detector level
V

y
Covariance matrix

A Migration matrix
τL2 Regularisation term
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Control distributions
Acceptance of NC DIS events

● Scattered lepton is found in SpaCal
● Lepton energy Ee > 10.5 GeV
● Selection based on un-prescaled SpaCal

electron trigger

Monte Carlo generators
● Rapgap: LO matrix elements + PS
● Djangoh: Color-dipole model
● String fragmentation for hadronisation

Background
● Photoproduction simulation using Pythia
● Normalised to data using dedicated event selection
● Background for jet quantities almost negligible
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Detector-level distributions for jets
Jet reconstruction

● kT jet algorithm with R=1
● Jets built from tracks and clusters
● Jet energy calibration using neural networks

Approx. 1% Jet energy scale uncertainty

Monte Carlo used for unfolding
● Jet multiplicities and spectra not well modelled

● Djangoh: pT
jet spectra too hard

● Rapgap: Jet multiplicity underestimated
● Both generators tend to have too few jets in 

forward direction 
-> MC generators are weighted to describe data

Dijet and Trijet
● Distributions raise steeply due to 

pT
jet > 5 GeV requirement

-> Extended phase space important for migrations
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Comparisons to Predictions
Recently improved prediction became available for DIS jets

● approximate NNLO (Phys. Rev. D92 (2015) 7, 074037)
● NNLO (Rev. Lett. 117 (2016) 042001) and [arXiv:1703.05977]

● Both theory groups have extended their calculations for our data
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Dijet cross sections

Dijet cross sections in NC DIS as a 
function of Q2 and <pT>2

● <PT>2 = (PT
jet1 + PT

jet2)/2
with: PT

jet > 4 GeV

Comparison to Predictions
● NLO (nlojet++, NNPDF30_nlo)
● approximate NNLO (JetVip, NNPDF30_nnlo)
● NNLO (NNLOJET, NNPDF30_nnlo)

● Overall: predictions give reasonable 
description of data
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Ratio of dijet cross sections to NLO

Scale uncertainty
● So-called '7-point scale variation':

Vary μr and μf independently by factors of 2 
and 0.5, but exclude variations in 'opposite' 
directions

Ratio to NLO prediction
● NLO give reasonable descriptions 

within large scale uncertainties
● aNNLO improves shape

● aNNLO expected to improve 
description at high <pT>

● NNLO improves shape dependence
● NNLO predictions have smaller scale 

uncertainties than NLO at high-<pT>
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Normalised jet cross sections
Normalised jet cross sections
● Normalised to:

'inclusive neutral-current DIS cross section' in 
 respective Q2 bin

Advantages
● Reduced experimental uncertainties
● Cancellation of normalisation uncertainty

(in our case: only partial cancellation, because NC 
DIS cross sections are measured only with a subset 
of the jet data because of trigger reasons)

NC DIS cross sections
● NLO (ZM-VFNS) and NNLO (FONLL-C) 

predictions provide a good description of the 
data 

● PDFs are fitted to NC DIS cross sections

Inclusive neutral-current DIS 
cross sections
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Normalised dijet cross sections
Normalised dijet cross sections

Predictions
● Predictions obtained as 

ratio of jet to NC DIS calculations
● Scale uncertainties by varying jet 

cross sections only
(because NC DIS are fitted to data)

Data to theory agreement
● Overall good description by NLO, 

aNNLO and NNLO predictions
● (only) somewhat reduced 

experimental uncertainties
● NNLO slightly overshoots data

-> partially caused by normalisation 
w.r.t. NC DIS
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Reminder: inclusive jets @ high-Q2

Eur. Phys. J. C75 (2015) 2 
● H1 HERA-II jet cross sections at high-Q2

● Inclusive jet, dijet and trijet cross sections
● 150 < Q2 < 15 000GeV2

Inclusive jets in range
● 7 < pT < 50 GeV

Recent studies showed
● Inclusive jets are well measurable down to pT ~ 

4 GeV
● The original 'high-Q2 '-analysis contained a 

cross section bin for inclusive jets for
5 < pT < 7 GeV

Extension to low-pT : 5 < pT < 7 GeV
● for each Q2 range
● Absolute and normalised cross sections



16Daniel Britzger – H1 JetsDIS17, April 2017

Inclusive jet cross sections

Inclusive jet cross sections 
● low Q2: 4.5 < PT < 50 GeV
● high Q2: 5 < PT < 50 GeV

Predictions
● NLO, aNNLO & NNLO

NLO
● Data well described within uncertainties

aNNLO
● Somewhat improved shape description

NNLO
● Improved shape and normalisation
● Reduced scale uncertainties for larger 

values of μr

Also measured
● Normalised inclusive jet cross sections
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Normalised inclusive jet cross sections

Normalised inclusive jets
● Normalisation w.r.t. inclusive NC DIS 

cross section in respective Q2 bin
● Significant reduction of uncertainties 

at higher values of Q2

Normalised jet cross sections
● Increase as a function of Q2 for a 

given PT interval

● Q2 and pT are both important scales 
for inclusive jet production
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Trijet cross sections
Trijet cross sections

● ep -> 3jets
● Leading order O(αs

2)

● No NNLO predictions available yet

Description by NLO
● Data well described by NLO (nlojet++)

● Data precision mainly higher than scale 
uncertainties

● Similar trends than observed for dijets
low scales: NLO undershoots data
high <PT> : NLO overshoots data

Normalised trijets also measured

Exemple for LO 
matrix element



19Daniel Britzger – H1 JetsDIS17, April 2017

Phenomenological application

22 < Q2 < 30 GeV2

35 < P
T

jet < 50 GeV

22 < Q2 < 30 GeV2

4.5 < P
T

jet < 7 GeV

NLO

PDF dependence of inclusive jet cross sections
● Cross sections as a function of xPDF

● PT-bins probe different x-regions
● Lowest x-values:  x ~ 10-3

● High-PT cross sections: x > 10-1

● x-dependence shows little dependence on Q2

H1 jets may become important for PDFs
● high-x gluon
● only a single hadron involved (decorrelate high-x <--> low-x)
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Determination of the strong coupling α
s
(M

Z
)

Determination of αs(MZ) in a fit to 
H1 HERA-II jets

● Use low- and high-Q2 data
● Low-Q2 jets [arxiv:1611.03421]
● high-Q2 jets (Eur.Phys.J.C75 (2015) 2)

● Use all normalised jet cross sections
● All correlations of uncertainties are known

● Fit αs(MZ) in χ2-minimization procedure

Two results (NLO)
● Probe running of αs(μr) 
● One fit to all data points together: αs(MZ)

● Very high experimental precision
● Future improvements on dominating theory uncertainties in NNLO

World average (PDG2016)
α

s
(M

Z
) = 0.1181 ± 0.0011
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Strong coupling α
s
(M

Z
) in NNLO

H1-prelim-17-031
● See talk on tuesday morning
 

NNLO predictions available for
● Inclusive jets
● Dijets

First extractions of strong coupling constant 
in NNLO precision

● Excellent agreement of theory and data
● Data at lower values of μR have an increased 

sensitivity to αs(MZ) 

Scale uncertainty in NNLO 
● reduction by approx. factor 2-3 compared to NLO
● Scale uncertainty remains dominant uncertainty

H1-prelim-17-031

Inner errors:   exp. only
Outer errors:  total error

data from 
this analysis
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Conclusion
Last missing piece of H1 jet legacy

Probe running of αs over one order of magnitude 
with H1 jet data

● Very high experimental precision on αs(MZ) 

Constrain PDFs with H1 jet data
● Very high sensitivity to gluon density

Outlook
● First extractions of αs(MZ) in NNLO on the way

Process HERA-I HERA-II

Low Q2
Inclusive jet
Dijet
Trijet

EPJ C 67 
(2010) 1 

arXiv:1611.03421
acc. by EPJ C

High Q2
Inclusive jet
Dijet
Trijet

EPJ C 65 
(2010) 363 

EPJ C 75 
(2015) 2

Finally we arrived: High-precision jet data together with  NNLO predictions

Eur.Phys.J.C65 (2010) 363 
Eur.Phys.J.C67 (2010) 1 
Eur.Phys.J.C75 (2015) 2
arXiv:1611.03421



23Daniel Britzger – H1 JetsDIS17, April 2017



24Daniel Britzger – H1 JetsDIS17, April 2017

PDF dependence

Study different (NNLO) PDF sets
● NNPDF3.0

● CT14
● MMHT
● HERAPDF2.0
● ABMP

● Technical remark: convolution with NLO matrix elements 
because NNLO matrix elements are too time-consuming 
to recalculate

Different PDFs
● Mosy studied NNLO PDF sets are quite 

consistent
● Different PDFs mainly covered by 

NNPDF30 PDF uncertainty
● only ABMP with difference 

(due to αs(mZ) ?)
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Normalised dijets
Normalised dijet cross 
sections in NC DIS as a 
function of Q2 and <pT>2

● <PT>2 = (PT
jet1 + PT

jet2)/2
with: PT

jet > 4 GeV

Comparison to NLO and NNLO 
predictions
● NLO give reasonable descriptions 

within large scale uncertainties ('6-
point' variation)

● NNLO improves shape 
dependence

● NNLO slightly overshoots data
-> partially caused by 
normalisation w.r.t. NC DIS

● high-pT region difficult to describe
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Inclusive jet cross sections
Double-differential inclusive jet 
cross sections as function of Q2 
and pT

jet

Inclusive jets
● Count each jet in an NC DIS event
● Stat. uncertainty and correlations are 

measured
● Well described by NLO

Compared to H1 HERA-I
● Largely independent measurement
● HERA-II data with comparable 

precision
● Benefit from refined experimental 

methods
● Statistical uncertainty reduced for high 

PT and high Q2
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'Normalised' jet cross sections
● H1prelim-16-062
● Normalise jet cross sections w.r.t. inclusive NC 

DIS cross section
● Full/partial cancellation of uncertainties

New Data
HERA-II low-Q2

HERA-II high-Q2, 5< pT <7GeV
Inclusive jets for major part of HERA NC DIS 
phase space

New predictions
aNNLO from JetViP

● Approximate NNLO using threshold 
resummation 
PR D 92 (2015) 074037 & work in progress

NNLO
● Full NNLO

PRL 117 (2016) 042001 & work in progress
See talk by J. Currie @ QCD@LHC2016

● Improved description of data by NNLO

Inclusive jets production in NC DIS
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Normalised Inclusive Jets
Detailed ratio to NLO prediction

● Data reasonably described by NLO theory, but 
NLO scale uncertainty large

Normalisation w.r.t. NC DIS for predictions
● NNLO & aNNLO predictions normalised with NC 

DIS predictions from APFEL using FONLL-C [V. 
Bertone et al.]

● NLO predictions normalised with ZM-VFNS 
using QCDNUM

PDF: NNPDF30_(n)nlo_0118
Scale μr = μf = (Q2+PT

2)/2
 
aNNLO 

● Improved data description at high-pT
● At low-pT aNNLO similar to NLO 

NNLO
● Improved description of data by NNLO
● Significantly reduced scale uncertainty 

(particularly for higher scales)

H1prelim-16-062
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Trijet cross sections

Double-differential (normalised) Trijet 
cross sections as a function of Q2 and 
<pT>3

● Precision limited by systematic 
uncertainties over whole kinematic range

● 4 x 8 data points
-> Excellent measurement of shape and 
dependence

● dominated by: Jet energy scale and 
model uncertainty

● Data precision overshoots NLO precision
● NLO has similar problems in describing 

the shape at low-Q2 as for dijet cross 
sections

No NNLO calculations available yet

H1prelim-16-062
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History and Outlook
Last missing piece of H1 jet legacy

Probe running of αs over one order of 
magnitude with all H1 jet data

● Very high experimental precision on αs(MZ) 

Contrain PDFs with H1 jet data
● Very high sensitivy to gluon density

Particularly at low μf

HERA-I and HERA-II data can be used 
together for PDF fits

Process HERA-I HERA-II

Low Q2
Inclusive jet
Dijet
Trijet

EPJ C 67 
(2010) 1 

H1prelim 16-061
H1prelim 16-062

High Q2
Inclusive jet
Dijet
Trijet

EPJ C 65 
(2010) 363 

EPJ C 75 
(2015) 2

Eur.Phys.J.C65 (2010) 363 
Eur.Phys.J.C67 (2010) 1 
Eur.Phys.J.C75 (2015) 2
H1prelim-16-061 & H1prelim-16-062

Finally we arrived: High-precision jet data and NNLO calculations
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Backup
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Drawing of the H1 experiment

The H1 experiment
H1 multi-purpose detector

Asymmetric design
Trackers 

● Silicon tracker
● Jet chambers
● Proportional chambers

Calorimeters
● Liquid Argon sampling calorimeter
● SpaCal: scintillating fiber calorimeter

Superconducting solenoid
● 1.15T magnetic field

Muon detectors

Excellent control over experimental uncertainties
● Overconstrained system in NC DIS
● Electron measurement: 0.5 – 1% scale uncertainty
● Jet-calibration with neural networks as functions of η and pT

● Jet energy scale: 1%
● Luminosity: 2.5%
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The HERA ep collider

HERA ep collider in Hamburg
● Data taking periods

● HERA I: 1994 – 2000 
● HERA II:  2003 – 2007
● Special runs with reduced Ep in 2007 

● Delivered integrated luminosity ~ 0.5 fb-1

HERA-II period
● Electron and positron runs
● √s = 319 GeV

● Ee = 27.6 GeV
● Ep = 920 GeV

● Analysed int. Luminosity: L = 184 pb-1

HERA ep collider Integrated luminosity

H1
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