Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

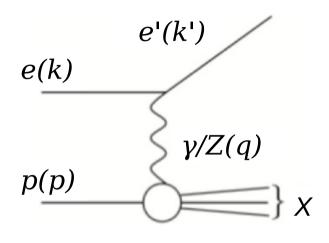
Daniel Britzger for the H1 Collaboration

DIS 17 25th International Workshop on Deep Inelastic Scattering and Related Topics Birmingham, UK 05.04.2017

Deep-inelastic scattering

Neutral current deep-inelastic scattering

Process: $ep \rightarrow e'X$ Electron or positron


Kinematic variables

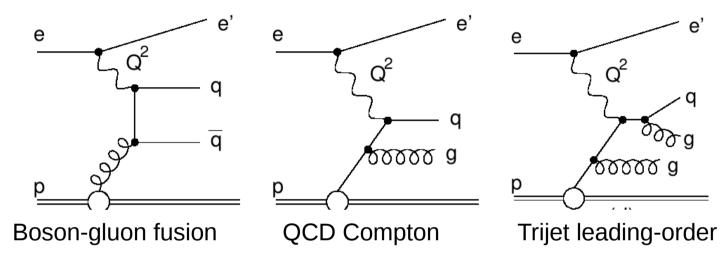
• Virtuality of exchanged boson Q²

$$Q^2 = -q^2 = -(k-k')^2$$

• Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

$$\sigma_{ep \to eX} = f_{p \to i} \otimes \hat{\sigma}_{ei \to eX}$$


NC and CC DIS cross sections (HERA-II) are mandatory ingredients for PDF fits

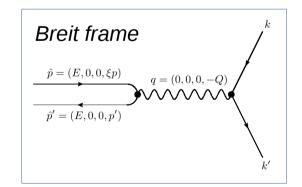
- Only one proton involved
 - -> lepton directly probes (charged) constitutents of proton

Gluon is mainly indirectly constrained by DGLAP and sum-rules

-> Measurement of $ep \rightarrow 2j+X$ will allow direct access of gluon content

Jet production in ep scattering

Jet measurements are performed in Breit reference frame

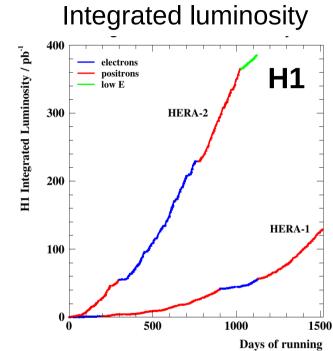

• Exchanged virtual boson collides 'head-on' with parton from proton ('brick-wall' frame)

Jet measurements directly sensitive

- to $\alpha_{\rm s}$ already at leading-order
- to gluon content of proton

Trijet measurement

- More than three jets with significant transverse momenta
- Leading-order already at $O(\alpha_s^2)$


The HERA ep collider

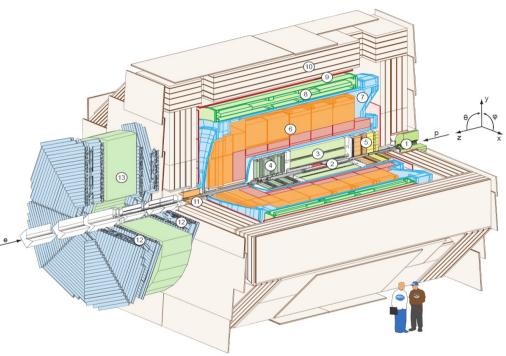
HERA ep collider

HERA ep collider in Hamburg

- Data taking periods
 - HERAI: 1994 2000
 - HERA II: 2003 2007
- Delivered integrated luminosity ~ 0.5 fb⁻¹

HERA-II period

- Electron and positron runs
- √s = 319 GeV
 - E_e = 27.6 GeV
 - E_p = 920 GeV
- Analysed int. Luminosity: L = 290 pb-1


H1 Experiment at HERA

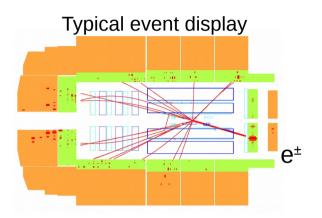
H1 multi-purpose detector

- Asymmetric design
- Trackers:
 - silicon tracker, jet chambers, proportional chambers, ...
- Calorimeters
 - Liquid Argon sampling calorimeter
 - SpaCal: scintillating fiber calorimeter
- Superconducting magnet: 1.15T
- Muon detectors

Excellent experimental precision

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 2.5%

Drawing of the H1 experiment


Analysis strategy and kinematic range

Data must be corrected for detector effects

- Kinematic migrations
- Acceptance and efficiency effects

Regularised unfolding

• For accurate descripton of migrations consider an '*extended phase space*'

	Extended phase space for unfolding	Cross section phase space
NC DIS	Q ² > 3 GeV ²	5.5 < Q ² < 80 GeV ²
	y > 0.08	0.2 < y < 0.6
(inclusive) jets	$P_{T}^{jet} > 3 \text{ GeV}$	$P_T^{jet} > 4.5 \text{ GeV}$
	$-1.5 < \eta^{lab} < 2.75$	$-1.0 < \eta^{lab} < 2.5$
Dijet and trijet		$P_{T}^{jet} > 4 \text{ GeV}$
	<p<sub>T^{jet}>>3 GeV</p<sub>	<p<sub>T^{jet}> > 5 [5.5] GeV</p<sub>

• Dijets/trijets: asymmetric cuts on $p_T^{jet1} \& p_T^{jet2}$ avoid IR sensitive regions in NNLO

Regularised unfolding

Regularised unfolding using TUnfold

• Calculate unfolded distribution *x* by minimising

$$\chi^{2}(x,\tau) = (y - Ax)^{T} V_{y}^{-1} (y - Ax) + \tau L^{T} L$$

- Linear analytic solution
- Linear error propagation
- Statistical correlations are considered in V_y

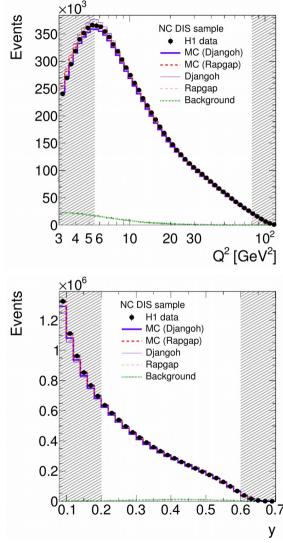
Simultaneous unfolding of Inclusive jet, Dijet, Trijet, NC DIS

- Statistical correlations are considered
- Matrix constituted from O(106) entries
 - Two generators used
 - Difference between the two -> model uncertainty
- Up to 6 variables considered for migrations
- 'detector-level fake jets' (or events) are constrained with NC DIS data

X Y V _y A TL ²	Migration m	actor level ariance matrix		
→ г -			n Matrix	
8 <mark>8</mark> 3	$\beta_2 - \beta_1, -\beta_2, -\beta_3$	<i>ε</i> ₁	<i>E</i> 2	<i>E</i> 3
Tri ar	Reconstructed jet events which e not generated as Trijet event			$\begin{array}{c} Trijet\\ Q^2, < p_{\mathrm{T}} >_3, y,\\ Trijet-cuts \end{array}$
	Reconstructed let events which e not generated as Dijet event		$D_{ijet}^{Q^2}$, $< p_T >_2$, y, Dijet-cuts	
Defec	Reconstructed s without match generator level	Incl. Jet $p_{T}^{\text{jet}}, Q^2, y, \eta$		
	$NC DIS Q^2, y$		EP	J C75 (2015) 2

Control distributions

Acceptance of NC DIS events


- Scattered lepton is found in SpaCal
- Lepton energy $E_e > 10.5 \text{ GeV}$
- Selection based on un-prescaled SpaCal electron trigger

Monte Carlo generators

- Rapgap: LO matrix elements + PS
- Djangoh: Color-dipole model
- String fragmentation for hadronisation

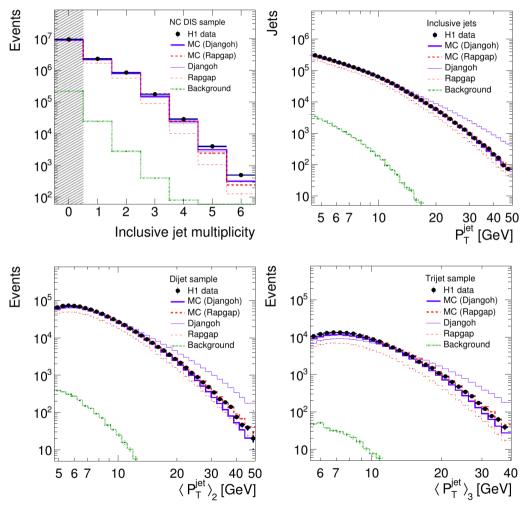
Background

- Photoproduction simulation using Pythia
- Normalised to data using dedicated event selection
- Background for jet quantities almost negligible

Detector-level distributions for jets

Jet reconstruction

- k_{τ} jet algorithm with R=1
- Jets built from tracks and clusters
- Jet energy calibration using neural networks Approx. 1% Jet energy scale uncertainty


Monte Carlo used for unfolding

- · Jet multiplicities and spectra not well modelled
 - Djangoh: p_T^{jet} spectra too hard
 - Rapgap: Jet multiplicity underestimated
 - Both generators tend to have too few jets in forward direction
- -> MC generators are weighted to describe data

Dijet and Trijet

• Distributions raise steeply due to $p_T^{jet} > 5$ GeV requirement

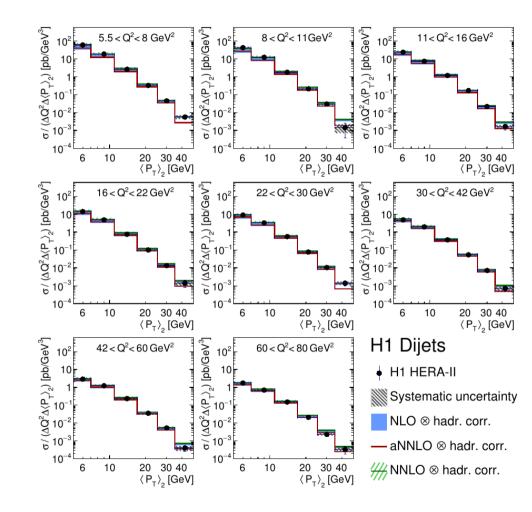
-> Extended phase space important for migrations

Comparisons to Predictions

Recently improved prediction became available for DIS jets

- approximate NNLO (Phys. Rev. D92 (2015) 7, 074037)
- NNLO (Rev. Lett. 117 (2016) 042001) and [arXiv:1703.05977]
- Both theory groups have extended their calculations for our data

Predictions	NLO	aNNLO	NNLO
Program for jet cross sections	nlojet++	JetViP	NNLOJET
pQCD order	NLO	approximate NNLO	NNLO
Calculation detail	Dipole subtraction	Phase space slicing	Antenna subtraction
		NNLO contributions	
		from unified threshold	
		resummation formalism	
Program for NC DIS	QCDNUM	APFEL	APFEL
Heavy quark scheme	ZM-VFNS	FONLL-C	FONLL-C
Order	NLO	NNLO	NNLO
PDF set	NNPDF3.0_NLO	NNPDF3.0_NNLO	NNPDF3.0_NNLO
$\alpha_s(M_Z)$	0.118	0.118	0.118
Hadronisation corrections	Djangoh and Rapgap		
Available for			
(Normalised) Inclusive jet	\checkmark	\checkmark	\checkmark
(Normalised) Dijet	\checkmark	\checkmark	\checkmark
(Normalised) Trijet	\checkmark		

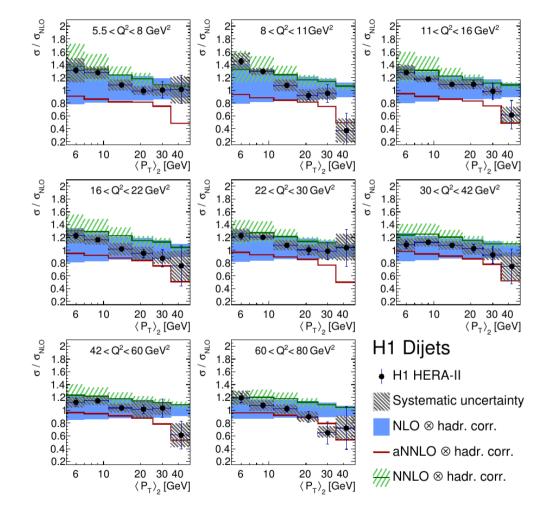

Dijet cross sections

Dijet cross sections in NC DIS as a function of Q^2 and $\langle p_T \rangle_2$

• $< P_T >_2 = (P_T^{jet1} + P_T^{jet2})/2$ with: $P_T^{jet} > 4 \text{ GeV}$

Comparison to Predictions

- NLO (nlojet++, NNPDF30_nlo)
- approximate NNLO (JetVip, NNPDF30_nnlo)
- NNLO (NNLOJET, NNPDF30_nnlo)
- Overall: predictions give reasonable description of data


Ratio of dijet cross sections to NLO

Scale uncertainty

• So-called '7-point scale variation': Vary μ_r and μ_f independently by factors of 2 and 0.5, but exclude variations in 'opposite' directions

Ratio to NLO prediction

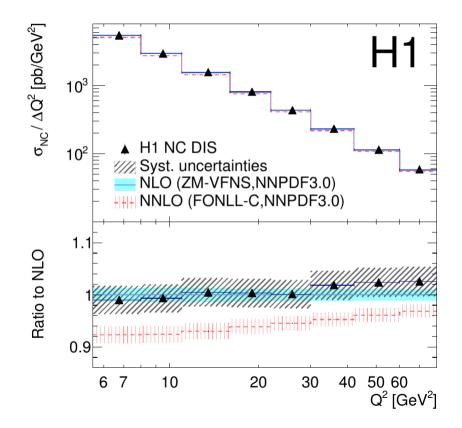
- NLO give reasonable descriptions within large scale uncertainties
- aNNLO improves shape
 - aNNLO expected to improve description at high <p_>
- NNLO improves shape dependence
 - NNLO predictions have smaller scale uncertainties than NLO at high- $< p_T >$

Normalised jet cross sections

Normalised jet cross sections

• Normalised to:

'inclusive neutral-current DIS cross section' in respective Q^2 bin


Advantages

- Reduced experimental uncertainties
- Cancellation of normalisation uncertainty (in our case: only partial cancellation, because NC DIS cross sections are measured only with a subset of the jet data because of trigger reasons)

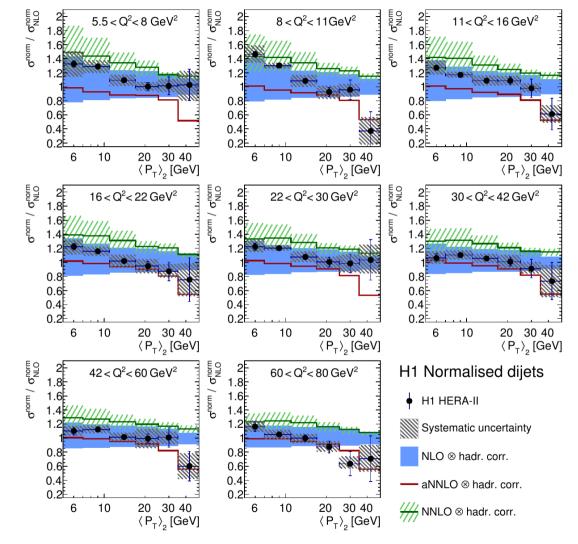
NC DIS cross sections

- NLO (ZM-VFNS) and NNLO (FONLL-C) predictions provide a good description of the data
- PDFs are fitted to NC DIS cross sections

Inclusive neutral-current DIS cross sections

Normalised dijet cross sections

Normalised dijet cross sections


$$\sigma_i^{\text{norm}} = \frac{\sigma_i}{\sigma_{i_q}^{\text{NC}}}$$

Predictions

- Predictions obtained as ratio of jet to NC DIS calculations
- Scale uncertainties by varying jet cross sections only (because NC DIS are fitted to data)

Data to theory agreement

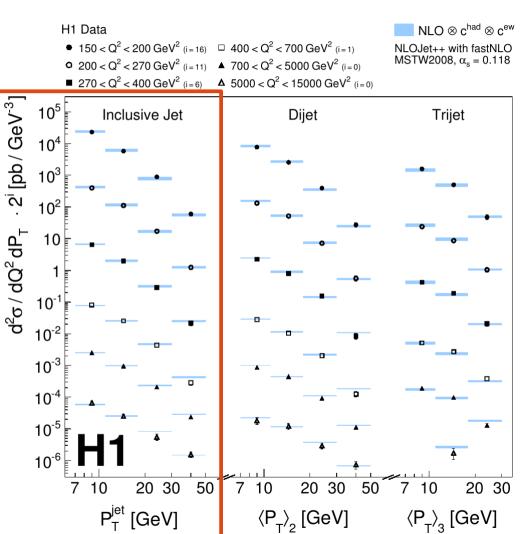
- Overall good description by NLO, aNNLO and NNLO predictions
- (only) somewhat reduced experimental uncertainties
- NNLO slightly overshoots data
 -> partially caused by normalisation w.r.t. NC DIS

Reminder: inclusive jets @ high-Q²

Eur. Phys. J. C75 (2015) 2

- H1 HERA-II jet cross sections at <u>high-Q²</u>
- Inclusive jet, dijet and trijet cross sections
- 150 < Q² < 15 000GeV²

Inclusive jets in range


• 7 < p_T < 50 GeV

Recent studies showed

- Inclusive jets are well measurable down to $p_{\tau} \sim 4 \; \text{GeV}$
- The original 'high-Q² '-analysis contained a cross section bin for inclusive jets for $5 < p_T < 7 \text{ GeV}$

Extension to low- p_{τ} : 5 < p_{τ} < 7 GeV

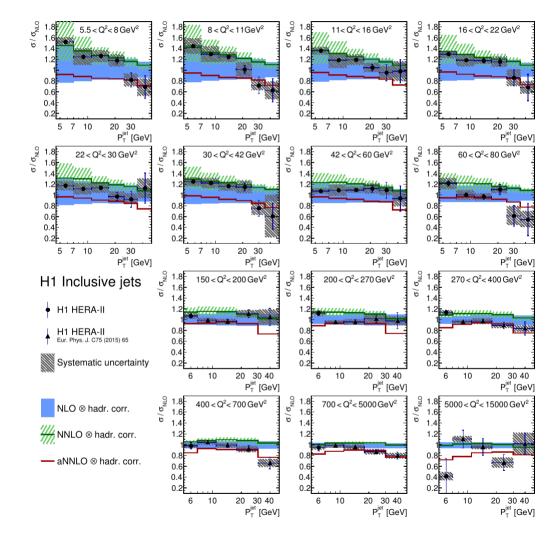
- for each Q² range
- Absolute and normalised cross sections

Inclusive jet cross sections

Inclusive jet cross sections

- low Q²: 4.5 < P_T < 50 GeV
- high Q^2 : 5 < P_T < 50 GeV

Predictions

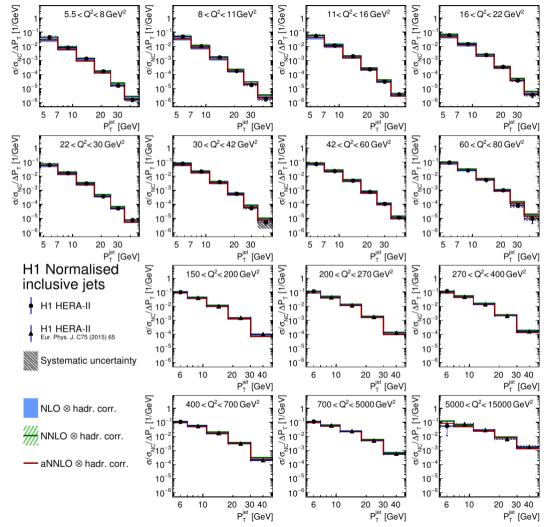

• NLO, aNNLO & NNLO

NLO

- Data well described within uncertainties **aNNLO**
- Somewhat improved shape description
 NNLO
 - Improved shape and normalisation
 - Reduced scale uncertainties for larger values of $\mu_{\rm r}$

Also measured

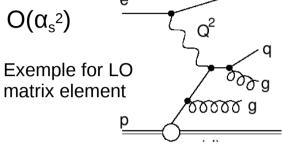
Normalised inclusive jet cross sections


Normalised inclusive jet cross sections

Normalised inclusive jets

- Normalisation w.r.t. inclusive NC DIS cross section in respective *Q*² bin
- Significant reduction of uncertainties at higher values of Q²

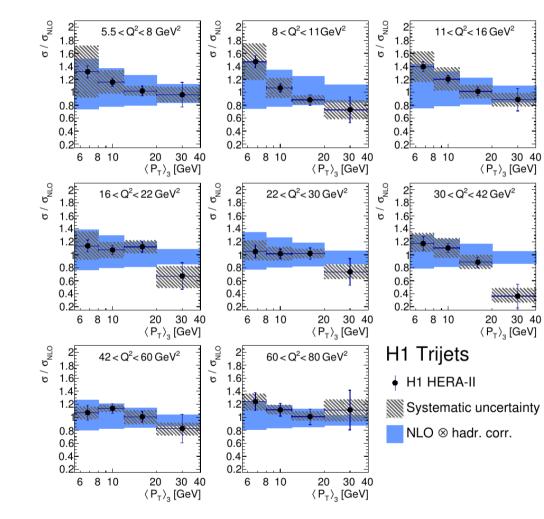
Normalised jet cross sections


- Increase as a function of Q^2 for a given P_{τ} interval
- Q² and p_T are both important scales for inclusive jet production

Trijet cross sections

Trijet cross sections

- ep -> 3jets
- Leading order $O(\alpha_s^2)$

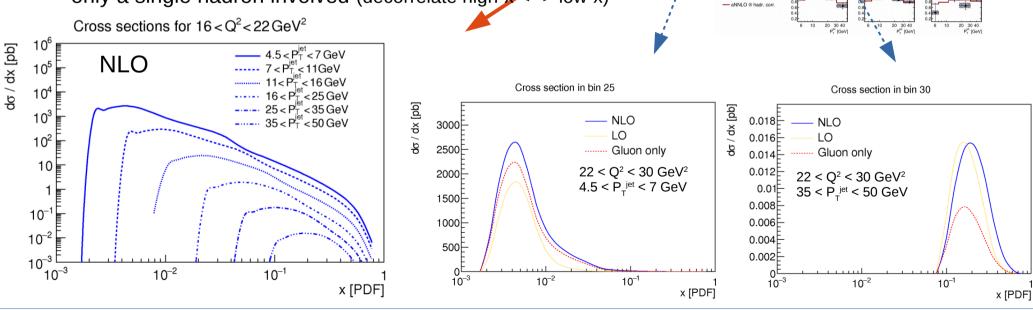


No NNLO predictions available yet

Description by NLO

- Data well described by NLO (nlojet++)
- Data precision mainly higher than scale uncertainties
- Similar trends than observed for dijets low scales: NLO undershoots data high $<P_{T}>$: NLO overshoots data

Normalised trijets also measured


Phenomenological application

PDF dependence of *inclusive jet* cross sections

- Cross sections as a function of X_{PDF}
- P_T-bins probe different *x*-regions
 - Lowest x-values: x ~ 10-3
 - High-P_T cross sections: $x > 10^{-1}$
- x-dependence shows little dependence on Q²

H1 jets may become important for PDFs

- high-x gluon
- only a single hadron involved (decorrelate high-x <--> low-x)

30 - 02 - 42 GeV

150 < Q² < 200 GeV

1 Inclusive jets H1 HERA-II H1 HERA-II

Systematic uncertaint

NLO ⊗ hadr. corr.

NNLO @ hadr. corr

42 < Q² < 60 GeV

200 < Q² < 270 GeV

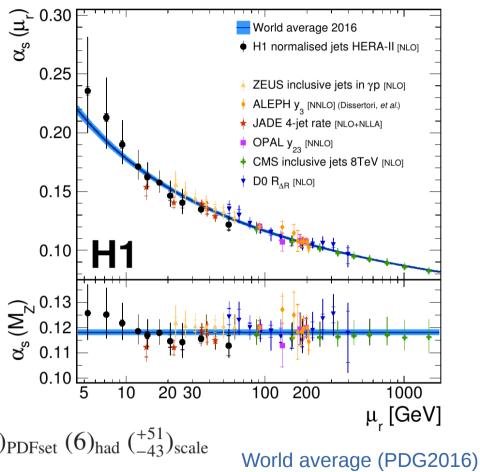
700 < Q²< 5000 Ge

20 30 40 P^{jet} [GeV 60 < 0² < 80 GeV

270 < Q²< 400 GeV

Determination of the strong coupling $\alpha_s(M_z)$

Determination of $\alpha_s(M_z)$ in a fit to H1 HERA-II jets


- Use low- and high-Q2 data
 - Low-Q2 jets [arxiv:1611.03421]
 - high-Q2 jets (Eur.Phys.J.C75 (2015) 2)
- Use all normalised jet cross sections
 - All correlations of uncertainties are known
- Fit $\alpha_s(M_z)$ in χ^2 -minimization procedure

Two results (NLO)

- Probe running of $\alpha_s(\mu_r)$
- One fit to all data points together: $\alpha_s(M_z)$

 $\alpha_s(M_Z) = 0.1173 \,(4)_{\exp} \,(3)_{\text{PDF}} \,(7)_{\text{PDF}(\alpha_s)} \,(11)_{\text{PDFset}} \,(6)_{\text{had}} \,(^{+51}_{-43})_{\text{scale}}$

- Very high experimental precision
- Future improvements on dominating theory uncertainties in NNLO

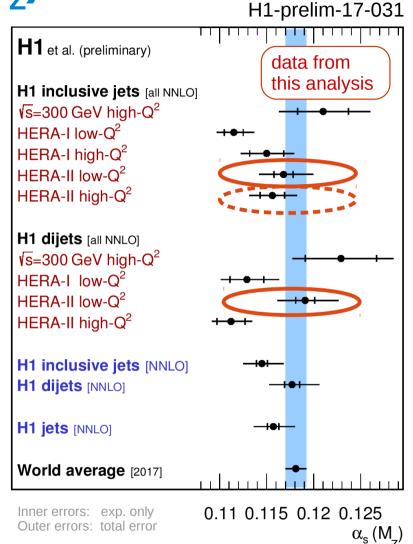
 $\alpha_{c}(M_{z}) = 0.1181 \pm 0.0011$

Strong coupling $\alpha_s(M_z)$ in NNLO

H1-prelim-17-031

See talk on tuesday morning

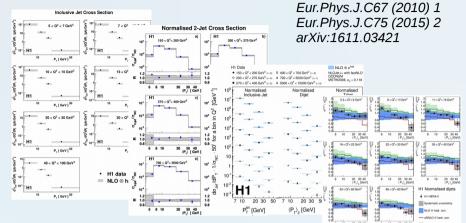
NNLO predictions available for


- Inclusive jets
- Dijets

First extractions of strong coupling constant in NNLO precision

- Excellent agreement of theory and data
- Data at lower values of μ_R have an increased sensitivity to $\alpha_s(M_z)$

Scale uncertainty in NNLO


- reduction by approx. factor 2-3 compared to NLO
- Scale uncertainty remains dominant uncertainty

Conclusion

Last missing piece of H1 jet legacy

Process		HERA-I	HERA-II
Low Q ²	Inclusive jet Dijet Trijet	EPJ C 67 (2010) 1	arXiv:1611.03421 acc. by EPJ C
High Q ²	Inclusive jet Dijet Trijet	EPJ C 65 (2010) 363	EPJ C 75 (2015) 2

Eur.Phys.J.C65 (2010) 363

Probe running of α_s over one order of magnitude with H1 jet data

• Very high experimental precision on $\alpha_s(M_z)$

Constrain PDFs with H1 jet data

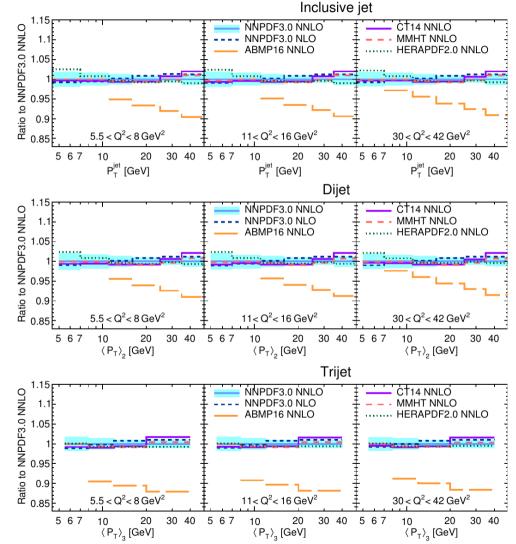
Very high sensitivity to gluon density

Outlook

• First extractions of $\alpha_s(M_z)$ in NNLO on the way

$\alpha_{s} \left(\mu_{r} \right)$ World average 2016 H1 normalised iets HERA-II INLOI 0.25 ZEUS inclusive jets in yp INLO ALEPH v [NNLO] (Dissertori, et al.) JADE 4-jet rate [NLO+NLLA] 0.20 OPAL y [NNLO] CMS inclusive jets 8TeV INLO D0 RAP [NLO] 0.15 0.10 $(\overset{~~}{M})^{0.13}_{0.12}$ $\overset{~~~}{N}$ 0.12 $\overset{~~~~}{v}$ 0.11 0.10 10 20 30 100 200 1000 μ [GeV]

Finally we arrived: High-precision jet data together with NNLO predictions


PDF dependence

Study different (NNLO) PDF sets

- NNPDF3.0
 - CT14
 - MMHT
 - HERAPDF2.0
 - ABMP
- Technical remark: convolution with NLO matrix elements because NNLO matrix elements are too time-consuming to recalculate

Different PDFs

- Mosy studied NNLO PDF sets are quite consistent
- Different PDFs mainly covered by NNPDF30 PDF uncertainty
- only ABMP with difference (due to α_s(m_z) ?)

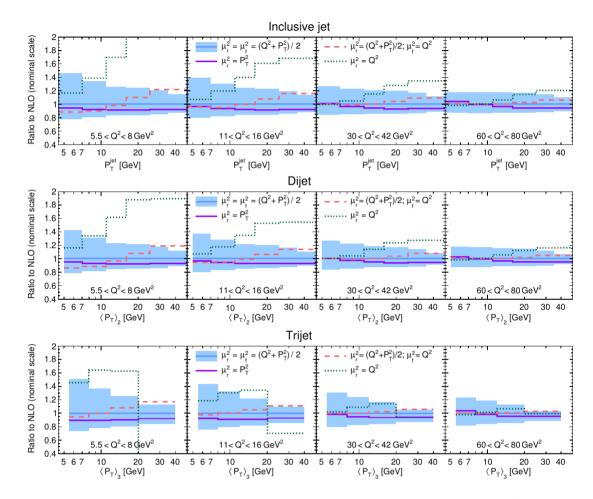
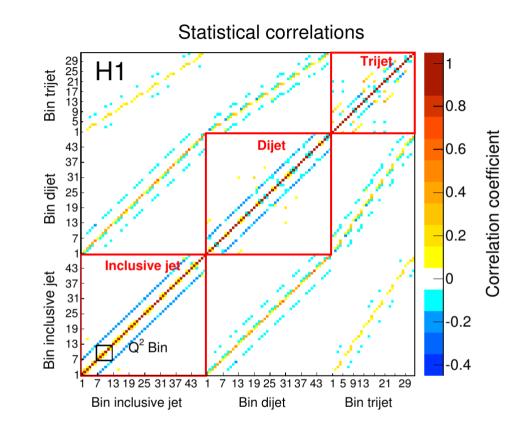
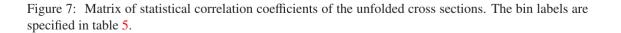
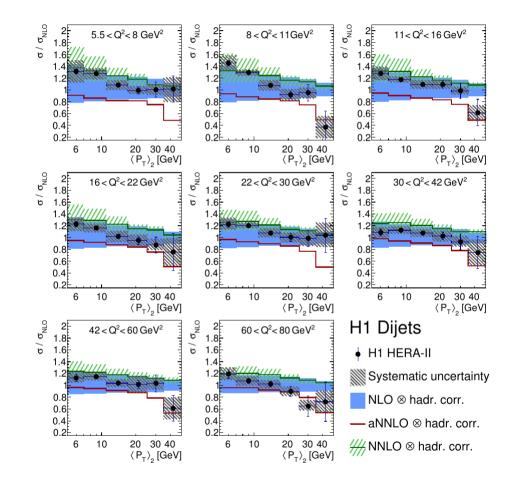




Figure 6: Comparison of NLO predictions obtained with scale choices of $\mu_r^2 = \mu_f^2 = \frac{1}{2}(Q^2 + P_T^2)$, $\mu_r^2 = \mu_f^2 = P_T^2$, $\mu_r^2 = \mu_f^2 = Q^2$, and $\mu_r^2 = \frac{1}{2}(Q^2 + P_T^2)$ with $\mu_f^2 = Q^2$ for selected Q^2 bins of the inclusive jet, dijet and trijet cross sections. The shaded area around the theory predictions indicates the scale uncertainty on the nominal scale choice of $\mu_r^2 = \mu_f^2 = \frac{1}{2}(Q^2 + P_T^2)$ as described in the text.


Normalised dijet cross

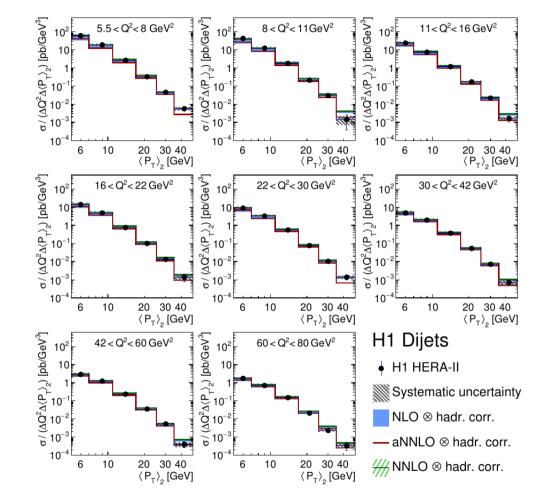
Normalised dijet cross sections in NC DIS as a function of Q^2 and $\langle p_T \rangle_2$

• $\langle P_T \rangle_2 = (P_T^{jet1} + P_T^{jet2})/2$ with: $P_T^{jet} > 4 \text{ GeV}$

Comparison to NLO and <u>NNLO</u> predictions

- NLO give reasonable descriptions within large scale uncertainties ('6point' variation)
- NNLO improves shape dependence
- NNLO slightly overshoots data
 -> partially caused by normalisation w.r.t. NC DIS
- high-pT region difficult to describe

Inclusive jet cross sections


Double-differential inclusive jet cross sections as function of Q^2 and $p_{T^{jet}}$

Inclusive jets

- Count each jet in an NC DIS event
- Stat. uncertainty and correlations are measured
- Well described by NLO

Compared to H1 HERA-I

- Largely independent measurement
- HERA-II data with comparable precision
- Benefit from refined experimental methods
- Statistical uncertainty reduced for high $P_{\scriptscriptstyle T}$ and high Q^2

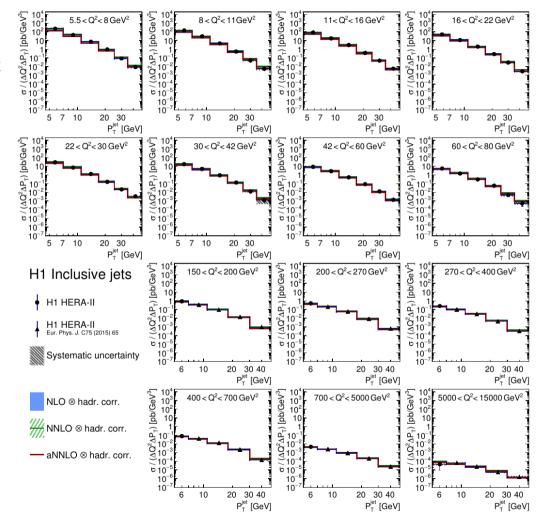
Inclusive jets production in NC DIS

'Normalised' jet cross sections

- H1prelim-16-062
- Normalise jet cross sections w.r.t. inclusive NC DIS cross section
 - Full/partial cancellation of uncertainties

<u>New Data</u>

HERA-II low-Q² HERA-II high-Q², $5 < p_T < 7 GeV$ Inclusive jets for major part of HERA NC DIS phase space


New predictions

aNNLO from JetViP

 Approximate NNLO using threshold resummation PR D 92 (2015) 074037 & work in progress

NNLO

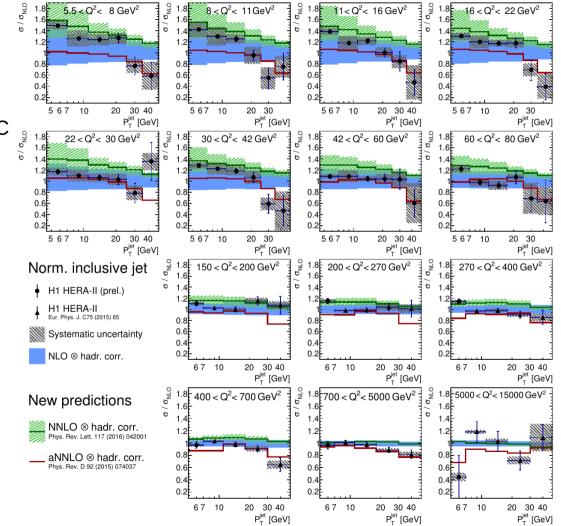
- Full NNLO PRL 117 (2016) 042001 & work in progress See talk by J. Currie @ QCD@LHC2016
- Improved description of data by NNLO

Normalised Inclusive Jets

Detailed ratio to NLO prediction

Data reasonably described by NLO theory, but NLO scale uncertainty large

Normalisation w.r.t. NC DIS for predictions


- NNLO & aNNLO predictions normalised with NC DIS predictions from APFEL using FONLL-C [V. Bertone et al.]
- NLO predictions normalised with ZM-VFNS using QCDNUM
- **PDF:** NNPDF30_(n)nlo_0118 **Scale** $\mu_r = \mu_f = (Q^2 + P_T^2)/2$

aNNLO

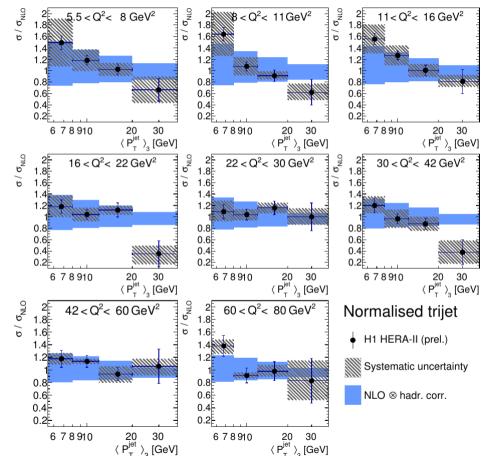
- Improved data description at high-pT
- At low-pT aNNLO similar to NLO

NNLO

- Improved description of data by NNLO
- Significantly reduced scale uncertainty (particularly for higher scales)

DIS17, April 2017

H1prelim-16-062


Trijet cross sections

H1prelim-16-062

Double-differential (normalised) Trijet cross sections as a function of Q^2 and $\langle p_T \rangle_3$

- Precision limited by systematic uncertainties over whole kinematic range
- 4 x 8 data points
 - -> Excellent measurement of shape and dependence
- dominated by: Jet energy scale and model uncertainty
- Data precision overshoots NLO precision
- NLO has similar problems in describing the shape at low-Q2 as for dijet cross sections

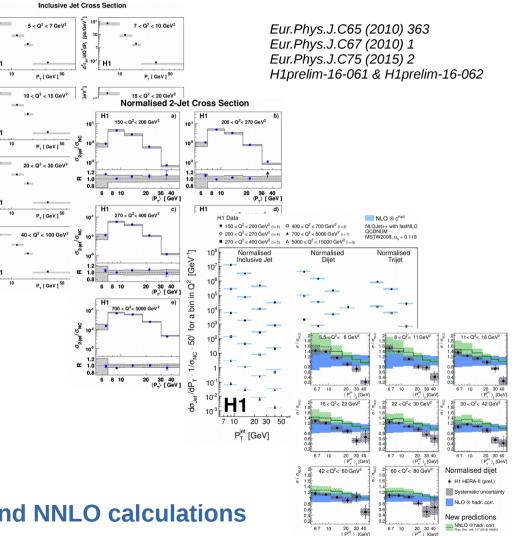
No NNLO calculations available yet

History and Outlook

Last missing piece of H1 jet legacy

Process		HERA-I	HERA-II
Low Q ²	Inclusive jet Dijet Trijet	EPJ C 67 (2010) 1	H1prelim 16-061 H1prelim 16-062
High Q ²	Inclusive jet Dijet Trijet	EPJ C 65 (2010) 363	EPJ C 75 (2015) 2

Probe running of α_s over one order of magnitude with all H1 jet data


• Very high experimental precision on $\alpha_s(M_z)$

Contrain PDFs with H1 jet data

- Very high sensitivy to gluon density Particularly at low $\mu_{\rm f}$

HERA-I and HERA-II data can be used together for PDF fits

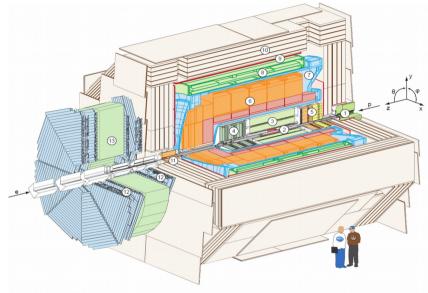
Finally we arrived: High-precision jet data and NNLO calculations

Predictions	NLO	aNNLO	NNLO
Jet cross sections			
Program	nlojet++	JetViP NNLOJE	
pQCD order	NLO [8]	approximate NNLO [12]	NNLO [15]
Calculation detail	Dipole subtraction	pole subtraction NLO plus NNLO contributions Antenna subtraction	
		from unified threshold	
		resummation formalism	
NC DIS cross sections			
Program	QCDNUM	APFEL	APFEL
Heavy quark scheme	ZM-VFNS	FONLL-C	FONLL-C
Order	NLO	NNLO	NNLO
PDF	NNPDF3.0_NLO	NNPDF3.0_NNLO	NNPDF3.0_NNLC
$\alpha_{\rm s}(M_{\rm Z})$	0.118	0.118	0.118
Hadronisation corrections	Djangoh and Rapgap		
Available for			
Normalised inclusive jet	\checkmark	\checkmark	\checkmark
Normalised dijet	\checkmark		\checkmark
Normalised trijet	\checkmark		

Table 2: Summary of the theory predictions for the normalised jet cross sections. All predictions are corrected for hadronisation effects with multiplicative corrections factors obtained from Djangoh and Rapgap.

The H1 experiment

H1 multi-purpose detector


Asymmetric design Trackers

- Silicon tracker
- Jet chambers
- Proportional chambers

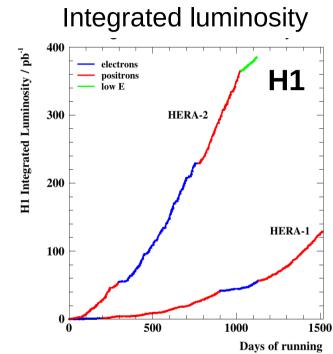
Calorimeters

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter Superconducting solenoid
- 1.15T magnetic field Muon detectors

Drawing of the H1 experiment

Excellent control over experimental uncertainties

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet-calibration with neural networks as functions of η and $p_{\scriptscriptstyle T}$
 - Jet energy scale: 1%
- Luminosity: 2.5%


The HERA ep collider

HERA ep collider

HERA ep collider in Hamburg

- Data taking periods
 - HERAI: 1994 2000
 - HERA II: 2003 2007
 - Special runs with reduced E_p in 2007
- Delivered integrated luminosity ~ 0.5 fb⁻¹

HERA-II period

- Electron and positron runs
- √s = 319 GeV
 - E_e = 27.6 GeV
 - E_p = 920 GeV
- Analysed int. Luminosity: L = 184 pb⁻¹