

IMPACT OF THE INCLUSION OF PRECISE Z PT DISTRIBUTIONS IN A PDF FIT

Maria Ubiali

Royal Society Dorothy Hodgkin Research Fellow University of Cambridge

DIS2017, Birmingham

Transverse momentum distributions

- Z boson production & decay into leptons benchmark Standard Model (SM) process at the LHC.
- Can be measured very accurately by the LHC experiments thanks to large production rate and clean signature
- Can be calculated to high accuracy within the Standard Model

✓ O(α_{s}^{2}) total xsec prediction - Hamberg et al (1991)

 \checkmark O(α_{s}^{2}) differential xsec - Anastasiou et al (2004), Melnikov et al (2006), Catani et al (2009)

✓ $O(\alpha_S^3)$ differential xsec - Boughezal et al (2016), Gehrmann-De Ridder et al (2016)

• Combination of precise experimental data and highly-developed theory allows this process to be used to determine quantities of fundamental importance, such as PDFs or α_{S}

Topic of my talk Boughezal, Guffanti, Petriello, MU - arXiv:1704.xxxxx

Outline of the talk

- Z transverse momentum distributions
 - Experimental measurements
 - Theoretical predictions
- The analysis
 - Inclusion of ZpT data in a HERA-only fit
 - Inclusion of ZpT data in global analysis
 - ➡ The NNPDF3.1 global set
- Conclusions and outlook

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised distributions only
- Three rapidity bins

0.0 < Y <1.0 1.0 < Y < 2.0

O(50) data points with pT > 30 GeV

ATLAS 7 TeV measurements ArXiv:1406.3660

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised and Unnormalised
- Six rapidity bins in Z peak region
 0.0 < Y < 0.4 0.4 < Y < 0.8
 0.8 < Y < 1.2 1.2 < Y < 1.6
 1.6 < Y < 2.0 2.0 < Y < 2.4

- Four low-invariant mass bins (12,20) (20,30) (30,46) (46,66) GeV
- One high-invariant mass bin (116,150) GeV
- O(150) datapoints with pT > 30 GeV

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised and un-normalised
- Five rapidity bins in Z peak region
 0.0 < Y < 0.4, 0.4 < Y < 0.8, 0.8 < Y < 1.2
 1.2 < Y < 1.6, 1.6 < Y < 2.0
- O(50) datapoints with pT > 30 GeV

CMS 8 TeV measurements arXiv: 1504.03511

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised and un-normalised
- Five rapidity bins in Z peak region
 0.0 < Y < 0.4, 0.4 < Y < 0.8, 0.8 < Y < 1.2
 1.2 < Y < 1.6, 1.6 < Y < 2.0
- O(50) datapoints with pT > 30 GeV

CMS 8 TeV measurements arXiv: 1504.03511

250 precise datapoints

 NNLO calculation performed using N-jettiness subtraction scheme, by using recent calculation of Z+j at NNLO and relaxing cut on final state jet

$$\mu_R = \mu_F = \sqrt{(p_T^Z)^2 + M_{ll}^2}$$

- NNLO/NLO K-factors 5% 10% depending on the rapidity and invariant mass region
- Included p_T > 30 GeV and verified stability upon raising the cut
- NLO approximated EW corrections relevant for the highest p_T bins in the Z-mass peak and for off-peak measurements

Boughezal et al, PRL 116 (2016) Boughezal et al, PRD 94 (2016)

ATLAS 7 TeV

ATLAS 8 TeV

ATLAS 8 TeV

Bin	Order	$N_{\rm dat}$	$\chi^2_{\rm d.o.f.}$ (NNPDF3.0)	$\chi^2_{\rm d.o.f.}$ (CT14)	$\chi^2_{\rm d.o.f.}$ (MMHT14)	$\chi^2_{ m d.o.f.}$ (ABMP16
$0.0 < y_Z < 0.4 \text{ GeV}$	NLO	10	4.0	3.2	2.4	n.a.
	NNLO	10	2.7	2.7	2.6	2.7
	NNLO+EW	10	3.4	3.2	3.1	5.4
$0.4 < y_Z < 0.8 \text{ GeV}$	NLO	10	5.6	4.6	3.8	n.a.
	NNLO	10	5.4	5.2	5.3	3.3
	NNLO+EW	10	4.0	3.9	3.7	3.8
$0.8 < y_Z < 1.2 \text{ GeV}$	NLO	10	5.8	3.8	3.0	n.a.
	NNLO	10	4.7	4.0	4.3	2.1
	NNLO+EW	10	2.3	2.0	1.9	1.7
$1.2 < y_Z < 1.6 \text{ GeV}$	NLO	10	4.5	3.2	2.5	n.a.
	NNLO	10	5.1	4.0	4.6	3.0
	NNLO+EW	10	3.3	2.6	2.7	2.5
$1.6 < y_Z < 2.0 { m ~GeV}$	NLO	10	4.4	3.2	2.4	n.a.
	NNLO	10	5.4	4.3	5.0	3.7
	NNLO+EW	10	3.9	3.2	3.4	3.0
$2.0 < y_Z < 2.4~{\rm GeV}$	NLO	10	4.1	3.2	2.4	n.a.
	NNLO	10	3.4	3.1	3.3	3.2
	NNLO+EW	10	2.6	2.3	2.4	2.5

- Good example of correlation-dominated observable. Data-theory comparison does not reflect actual value of the χ^2
- NNLO correction improves agreement (before fit) especially at central rapidities
- EW corrections only relevant for the two highest p_T bins in the Z-mass peak
- Similar picture for CMS data (Y < 1.6)

Correlation with PDFs

z zpt 13tev(NLO) 1.00.5 0.0 -0.5-1.00.5 0.0 12 -0.5-1.00.5 re 0.0 -0.5-1.00.5 S 0.0 -0.5-1.00.5 ~ 0.0 -0.5-1.00.5 0.0 3 -0.5-1.00.5 0.0 -0.5 -1.0^{-1}_{-5} 10^{-4} 10-1 10 10 10^{0}

- Inclusion of Z pT data at NNLO excluding pT bins below 30 GeV and the one/two largest pT bins affected by small- / large-pT enhancements
- $\begin{array}{ll} p_T^Z < 500 \, \mathrm{GeV} & (\mathrm{ATLAS\,7\,TeV}) \\ \mathrm{30\,\,GeV} < \ p_T^Z < 150 \, \mathrm{GeV} & (\mathrm{ATLAS\,8\,TeV} \mathrm{Z-peak\,region}) \\ p_T^Z < 170 \, \mathrm{GeV} & (\mathrm{CMS\,8\,TeV}) \end{array}$
 - Expect constraint to intermediate-x gluon and light quark distributions

Generated with SM-PDF web interface using NLO observable and NNLO PDFs https://smpdf.mi.infn.it/ Carrazza, Kassabov 1606.09248

Extra-statistical uncertainty

- NNLO theory predictions affected by Monte Carlo uncertainties
- Good fit quality only if uncertainties in theoretical predictions are estimated by comparing fluctuations with respect to smooth interpolation
- Explore 0%, 0.5% and 1% hypothesis

	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{ m ATLAS8tev,m}$	$\chi^2_{\rm ATLAS8tev,y}$	$\chi^2_{ m CMS8tev}$	$\chi^2_{ m tot}$
	(21.8)	(1.00)	(1.56)	(1.55)	1.168
S	1.39	(1.39)	(2.04)	(1.41)	1.176
Ë	(19.6)	0.91	0.70	(1.61)	1.146
Ω.	(16.2)	(1.04)	(1.56)	1.21	1.176
at	(18.0)	0.90	0.77	1.42	1.156
σ	1.64	1.05	1.17	1.27	1.171
	(27.6)	(1.10)	(2.83)	(2.46)	1.168
N	1.58	(1.54)	(3.36)	(2.11)	1.186
+	(23.0)	0.99	1.05	(3.01)	1.168
4	(20.5)	(1.13)	(3.15)	1.91	1.198
Ř	(21.4)	0.99	1.29	2.44	1.207
Ï	2.13	1.18	1.98	2.21	1.253
_	(30.6)	(1.15)	(4.65)	(3.46)	1.168
	1.74	(1.69)	(4.79)	(3.06)	1.185
	(25.5)	1.02	1.66	(4.79)	1.193
	(19.5)	(1.28)	(5.44)	2.51	1.225
	(24.5)	1.03	2.09	3.59	1.251
	2.35	1.24	2.81	3.19	1.301
nn					

+ 1% uncorrelated uncertainty

+ 0.5% uncorrelated uncertainty

+ 0% uncorrelated uncertainty

Impact of Z p_T distributions (HERA fits)

 PDFs stable under extra statistical uncertainty included in the fit (only slightly smaller PDF error reduction when no extra uncertainty is included - barely visible)

Impact of Z p_T distributions (HERA fits)

xg(x,Q), comparison xg(x,Q), comparison 1.4 1.4 HERA HERA 1.3EGluon Gluon HERA + ATLASTTEN HERA + ATLASZTEV 1.3 HERA + ATLASBIE HERA + ATLASSTEV HERA + CMS8TE\ HERA + CMS8TEV 1.2 +1%+0%1.2 Q = 1.00e+02 Ge Q = 1.00e+02 GeV **Web** senerated with APFEL 2.7.1 Web 1.1 1.1 Ratio Ratio APFEL _____ ------0.9 0.9 0.8 0.8 **FI IMINA** RELIMINA 0.7 0.7 0.6 0.6 10-5 10⁻² 10⁻³ 10⁻³ 10⁻² 10⁻¹ 10⁻¹ 10-5 10-4 10-4 g at 100.0 GeV g at 100.0 GeV HERA 3.5 HERA + ATLAS7TEV (0%) 3.5 + ATLAS7 (156) HERA + ATLAS8TEV (0%) A + ATLAS8 (1%) HERA + CMSSTEV (0%) 3.0 RA + CMS8 (1%) 3.0 2.5 2.5 (x) 2.0 10x (x) 2.0 6 x 1.5 1.5 1.0 1.00.5 0.5 0.0 0.0 10^{-5} 10^{-4} 10^{-3} 10-2 10^{-1} 10^{0} 10-3 10-5 10-4 10^{-1} 10^{-2} 100 х х

12/19

Impact of Z p_T distributions (HERA fits) xu(x,Q), comparison xu(x,Q), comparison HERA HEBA + ATLAS7TE\ 1.3 1.3 HERA + all HERA + 8TEV + CMS8TEV 1.2 1.2 Q = 1.00e+02 GeV Q = 1.00e+02 GeV Senerated with APFEL 2.7.1 Web 1.1 with APFEL 2.7.1 1.1 Ratio Ratio 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 10⁻⁵ 10⁻⁴ 1**0**⁻³ 10⁻² 10-5 10-4 1**0**-2 10⁻¹ 10⁻³ 10-1 x х

- Impact of Z pT distributions is quite strong, they increase the light quark distributions in regions in which we expect them to be correlated with measurement
- ATLAS and CMS data at 8 TeV (unnormalised) decrease uncertainty of gluon and light quark distributions at both in HERA-only fits and in global fits.
- ATLAS 7 TeV data (normalised) can be fitted individually but point to a different minimum, when added together uncertainty increases!

Impact of Z p_T distributions (HERA fits)

- Impact of Z pT distributions is quite strong, they increase the light quark distributions in regions in which we expect them to be correlated with measurement
- ATLAS and CMS data at 8 TeV (unnormalised) decrease uncertainty of gluon and light quark distributions at both in HERA-only fits and in global fits.
- ATLAS 7 TeV data (normalised) can be fitted individually but point to a different minimum, when added together uncertainty increases!

Impact of Z p_T distributions (global 3.0)

 Baseline: NNPDF3.0red with HERA I+II combined data (instead of separated sets) and without jets data

• Perturbative charm

fit id	extra Δ	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{ m ATLAS8tev,mdist}$	$\chi^2_{ m ATLAS8tev,ydist}$	$\chi^2_{ m CMS8tev}$	$\chi^2_{ m tot}$
(aa)	1%	(6.93)	(0.98)	(1.06)	(1.41)	1.17677
(bb)	1%	3.20	(1.03)	(1.40)	(1.47)	1.17641
(cc)	1%	(7.87)	0.96	0.88	1.32	1.17690
(dd)	1%	3.45	1.01	1.26	1.36	1.17969

Impact of Z p_T distributions (global 3.0)

- Baseline: NNPDF3.0red with HERA I+II combined data (instead of separated sets) and without jets data
- Perturbative charm

fit id	$\mathrm{extra}\;\Delta$	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{ m ATLAS8tev,mdist}$	$\chi^2_{ m ATLAS8tev,ydist}$	$\chi^2_{ m CMS8tev}$	$\chi^2_{ m tot}$
(aa)	1%	(6.93)	(0.98)	(1.06)	(1.41)	1.17677
(bb)	1%	3.20	(1.03)	(1.40)	(1.47)	1.17641
(cc)	1%	(7.87)	0.96	0.88	1.32	1.17690
(dd)	1%	3.45	1.01	1.26	1.36	1.17969

Impact of Z p_T distributions (global 3.0)

- Baseline: NNPDF3.0red with HERA I+II combined data (instead of separated sets) and without jets data
- Perturbative charm

fit id	extra Δ	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{ m ATLAS8tev,mdist}$	$\chi^2_{ m ATLAS8tev,ydist}$	$\chi^2_{ m CMS8tev}$	$\chi^2_{ m tot}$
(aa)	1%	(6.93)	(0.98)	(1.06)	(1.41)	1.17677
(bb)	1%	3.20	(1.03)	(1.40)	(1.47)	1.17641
(cc)	1%	(7.87)	0.96	0.88	1.32	1.17690
(dd)	1%	3.45	1.01	1.26	1.36	1.17969

Impact of Z p_T distributions (NNPDF3.1)

- NNPDF3.1 analysis confirms our results
- 8 TeV data included reduce uncertainties without moving central value
- 7 TeV data would cause a downwards shift and no error reduction

Conclusions

- Z boson production & decay into leptons benchmark Standard Model (SM) process at LHC.
- Combination of precise experimental data and highly-developed theory allows this process to be used to determine PDFs
- Z pT spectrum sensitive to both soft QCD radiation (at small pT) and to large electroweak Sudakov logarithms (at large pT), interesting to see whether it can be fitter in fixed-order fit and what is the pT range
- For first time need to include MC statistical uncertainty to get good chi2. PDFs stable under choice of MC statistical uncertainty (within reasonable range)
- CMS and ATLAS data at 8 TeV (unnormalised) are compatible and lead to significant reduction in PDF uncertainties
- ATLAS 7 TeV data (normalised) can be fitted individually but seems to point to a different minimum. Covariance matrix for normalised experiments built for the whole pT spectrum, pT cuts modify correlations between bins. Need pT resummation?
- In the future, lots of interesting physics studies: test inclusion of pT resummation, check impact of non-perturbative effects, look at ϕ^* distributions, impact on the determination of α_S

Conclusions

- Z boson production & decay into leptons benchmark Standard Model (SM) process at LHC.
- Combination of precise experimental data and highly-developed theory allows this process to be used to determine PDFs
- Z pT spectrum sensitive to both soft QCD radiation (at small pT) and to large electroweak Sudakov logarithms (at large pT), interesting to see whether it can be fitter in fixed-order fit and what is the pT range
- For first time need to include MC statistical uncertainty to get good chi2. PDFs stable under choice of MC statistical uncertainty (within reasonable range)
- CMS and ATLAS data at 8 TeV (unnormalised) are compatible and lead to significant reduction in PDF uncertainties
- ATLAS 7 TeV data (normalised) can be fitted individually but seems to point to a different minimum. Covariance matrix for normalised experiments built for the whole pT spectrum, pT cuts modify correlations between bins. Need pT resummation?
- In the future, lots of interesting physics studies: test inclusion of pT resummation, check impact of non-perturbative effects, look at ϕ^* distributions, impact on the determination of α_S

Thanks for your attention!!

Error reduction

NNLO + EW fit

Z pT data

NNLO, $Q^2 = 10^4 \text{ GeV}^2$

Z p_T distributions

/d.o.f.

10²

p[∥]_⊤ [GeV]

$Z p_T distributions$

Non-perturbative effects

Non-perturbative effects in Z p_T

- ➤ Inclusive Z cross section should have ~Λ²/M² corrections (~10⁻⁴?)
- Z p_T is not inclusive so corrections can be ~Λ/M.
- Size of effect can't be probed by turning MC hadronisation on/off [maybe by modifying underlying MC parameters?]
- Shifting Z p_T by a finite amount illustrates what could happen

G. Salam, talk at KITP 2016