Proton structure fluctuations: from HERA to the LHC

Heikki Mäntysaari

Brookhaven National Laboratory

DIS 2017

A fundamental question
How are the quarks and gluons distributed in space inside the nucleon?

Practical applications
Initial state geometry is a necessary input for hydrodynamical simulations

- Collective phenomena seen in pp&pA
- Initial state geometry \(\Rightarrow \) final state collectivity

Diffractive processes probe
- Spatial density profile
- **Density fluctuations**

ATLAS, arXiv:1409.1792
Diffractive vector meson production in dipole picture

1. $\gamma^* \rightarrow q\bar{q}$ splitting: $\Psi^\gamma(r, Q^2, z)$
2. $q\bar{q}$ dipole scatters elastically: $N(r, x, b)$
3. $q\bar{q} \rightarrow J/\Psi$: $\Psi^V(r, Q^2, z)$

Diffractive scattering amplitude

$$A \sim \int d^2b dzd^2r \Psi^\gamma \Psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b)$$

- Fourier transfer from impact parameter to transverse momentum Δ → access to spatial structure
- $\Delta = \text{transverse momentum of the vector meson}$
- N is universal dipole-proton scattering amplitude (here: IPsat/IP-Glasma)
Coherent diffraction = target remains intact

Target is at the same quantum state before and after the scattering:

\[\langle \rangle = \text{target average} \quad \text{(Miettinen, Pumplin, PRD 18, 1978, ...)} \]

\[\frac{d\sigma}{dt} \gamma^* p \rightarrow V p \sim |\langle A(x, Q^2, t)\rangle|^2 \]

with

\[A \sim \int d^2 b dz d^2 r \psi^* \psi^v(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b) \]

- Coherent \(t = -\Delta^2 \) spectra is Fourier transfer of the average density
Incoherent diffraction = target breaks up

Total diffractive cross section \rightarrow coherent cross section \rightarrow target breaks up

$$\frac{d\sigma_{\gamma^* p \rightarrow V p^*}}{dt} \sim \langle |A(x, Q^2, t)|^2 \rangle - \left| \langle A(x, Q^2, t) \rangle \right|^2$$

with

$$A \sim \int d^2b dz d^2r \psi^* \psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b)$$

- Incoherent cross section is variance \Leftrightarrow sensitive to fluctuations
Incoherent diffraction $= \text{target breaks up}$

Total diffractive cross section $- \text{coherent cross section} \rightarrow \text{target breaks up}$

$$\frac{d\sigma_{\gamma^* p \rightarrow V p^*}}{dt} \sim \langle |A(x, Q^2, t)|^2 \rangle - |\langle A(x, Q^2, t) \rangle|^2$$

with

$$A \sim \int d^2 b dz d^2 r \psi^* \psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b)$$

- Incoherent cross section is variance \Leftrightarrow sensitive to fluctuations

Constraints

Simultaneous description of coherent and incoherent data allows us to constrain the average shape and the amount of fluctuations
Constraining proton fluctuations

Start with a simple constituent quark inspired picture:

- Sample quark positions from a Gaussian distribution, width B_{qc}
- Small-x gluons are located around the valence quarks (width B_q).
- Combination of B_{qc} and B_q sets the degree of geometric fluctuations
Constraining proton fluctuations

Start with a simple constituent quark inspired picture:

- Sample quark positions from a Gaussian distribution, width B_{qc}.
- Small-x gluons are located around the valence quarks (width B_q).
- Combination of B_{qc} and B_q sets the degree of geometric fluctuations.

Now proton = 3 overlapping hot spots.

\[T_{\text{proton}}(b) = \sum_{i=1}^{3} T_q(b - b_i) \quad T_q(b) \sim e^{-b^2/(2B_q)} \]
Adding color charge fluctuations: IP-Glasma

- Use IPsat dipole model to obtain $Q_s(b_T)$ from $T_{\text{proton}}(b_T)$
- MV-model: Sample color charges, density $\sim Q_s(b_T)$
- Solve Yang-Mills equations to obtain the Wilson lines

$$V(b_T) = P \exp \left(-ig \int \frac{\rho(x^-, b_T)}{\nabla^2 + m^2} \right)$$

- Dipole amplitude: $N(x_T, y_T) = 1 - \text{Tr} V(x_T)V^\dagger(y_T)/N_c$
- Fix parameters B_{qc}, B_q and m with HERA data

Wilson lines will be input for hydrodynamical calculations later!
$\gamma p \rightarrow J/\psi p, W = 75 \text{ GeV}$

- Color charge fluctuations alone are not enough
IP-Glasma and HERA $\gamma p \rightarrow J/\Psi p$ data

- Large geometric fluctuations are needed
- Also included Q_s fluctuations that improve the description at small $|t|$ (\sim large distance)

Parameters fitted to H1 data

H.M., B. Schenke, PRD94 (2016), 034042
Application I: collectivity in pA collisions

Large elliptic flow (v_2) seen in pA collisions

IP-Glasma with hydro works will with the AA data, apply to pA
Does it work?

First approach: round proton with only color charge fluctuations

B. Schenke, R. Venugopalan,
PRL113 (2014) 102301

Color charge and Q_s fluctuations in the initial state do not create large enough flow harmonics to the final state
Hydro calculations with proton fluctuations from HERA

Hydro numbers

- $\tau_0 = 0.4$ fm
- $T_{fo} = 155$ MeV
- Shear and bulk viscosity
- Initial $\pi^{\mu\nu}$
- $\eta/s = 0.2$

Good description of v_n at high multiplicities.

Application II: Ultraperipheral AA collisions

UltraPeripheral heavy ion Collisions (UPC):
access to nuclear DIS before EIC

- At $|b_T| > 2R_A$ one nucleus acts as a photon source
- Write dipole-nucleus amplitude N_A as

$$
1 - N_A(r_T, b_T, x) = 1 - \prod_{i=1}^{A} \left[1 - N(r_T, b_T - b_T,i, x) \right]
$$

Two sources of fluctuations:
- Sample nucleon positions from Woods-Saxon
- Sample constituent quark structure for each nucleon

Currently: no IP-Glasma description of the nucleus, use IPsat to describe dipole-nucleon scattering
Accessing fluctuations at different scales

\[\text{Pb} + \text{Pb} \rightarrow J/\Psi + \text{Pb} + \text{Pb}, \sqrt{s} = 5.02 \text{ TeV}, y = 0 \]

- $\sqrt{|t|}$ is conjugate to b_T
- Small $|t|$: fluctuations of nucleon positions
- Large $|t|$: fluctuations at subnucleon scale
- Incoherent slope changes at $|t| \approx 0.25 \text{GeV}^2 \sim 0.4 \text{ fm}$

which is size of hot spots

Coherent: thick lines
Incoherent: thin lines

H. M., B. Schenke, arXiv:1703.09256
Comparison to LHC data, no subnucleonic fluctuations

Pb + Pb → $J/\Psi + Pb + Pb$ (coherent), $\sqrt{s_{NN}} = 2760$ GeV

Pb + Pb → $J/\Psi + Pb + Pb^*$ (incoherent), $\sqrt{s_{NN}} = 2760$ GeV

- Only fluctuations of nucleon positions from Woods-Saxon
 Coherent cross section overestimated and incoherent underestimated
- $\sim 20 \ldots 30\%$ normalization uncertainty from the J/Ψ wave function

H.M, B. Schenke, arXiv:1703.09256
Comparison to LHC data, with subnucleon fluctuations

\[\text{Pb} + \text{Pb} \rightarrow J/\Psi + \text{Pb} + \text{Pb} \text{ (coherent)}, \quad \sqrt{s_{NN}} = 2760 \text{ GeV} \]

- Consistently slightly above the data, incoherent/coherent ratio compatible
- \(\sim 20 \ldots 30\% \) normalization uncertainty from the \(J/\Psi \) wave function
Conclusions

- Constrain (amount of) proton structure fluctuations using HERA diffractive data
- Applications to LHC
 - pA hydro calculations compatible with LHC ν_n data
 - Required for good description of the LHC ultraperipheral AA data
 - t spectra from UPC sensitive to scale at which fluctuations take place
- Next step: include small-x evolution in terms of JIMWLK equation
Saturation scale fluctuations

Saturation scale fluctuations ($p + p$ multiplicity distributions: $\sigma \sim 0.5$)

$$P(\ln \frac{Q_s^2}{\langle Q_s^2 \rangle}) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{\ln^2 \frac{Q_s^2}{\langle Q_s^2 \rangle}}{2\sigma^2} \right]$$

McLerran, Tribedy, arXiv:1508.03292: $p + p$ multiplicity distributions: $\sigma \sim 0.5$

- Shifted to keep average Q_s unchanged
- Allow Q_s^2 of each constituent quark to fluctuate
- If no geometric fluctuations, divide transverse space to $\sim 1/Q_s^2$ cells where Q_s^2 fluctuates
Impact Parameter dependent saturation model for the dipole amplitude

\[
N = 1 - \exp\left[-\frac{\pi^2}{2N_c} \alpha_s x g(x, \mu^2) T_p(b) r^2\right]
\]

- \(T_p(b) \) is transverse proton density function (Gaussian)
- \(x g \) is DGLAP evolved gluon density
- Free parameters fitted to HERA \(F_2 \) data
 (Kowalski, Teaney 2003; Rezaeian et al, 2013)
Lumpiness matters, not details of the density profile

3 valence quarks that are connected by "color flux tubes":
Gaussian tubes connecting quarks. Also good description of the data

H.M, B. Schenke, PRD94 034042
Flux tubes implementation following results from hep-lat/0606016, used also e.g. in 1307.5911
Dependence on τ_0
Insensitivity on infrared cutoff

IP-Glasma: IR cutoff $m \sim \Lambda_{\text{QCD}}$ to regulates long distance coulomb tails
- Proton size depends on m
- No sensitivity at large $|t|$
Saturation scale fluctuations w/o geometric fluctuations

Allow Q_s^2 to fluctuate, $P(\ln Q_s^2/\langle Q_s^2 \rangle) \sim \exp(-[\ln^2 Q_s^2/\langle Q_s^2 \rangle]/2\sigma)$

Constrained by pp multiplicity fluctuations (McLerran, Tribedy, arXiv:1508.03292)

- Q_s fluctuations alone are not enough
Saturation scale fluctuations + geometric fluctuations

Allow Q_s of each constituent quark to fluctuate separately (IPsat):

- Q_s fluctuations dominate incoherent cross section at small $|t|$ (\sim large distance)
Allow Q_s of each constituent quark to fluctuate

Constrained by pp multiplicity data \cite{McLerran}

Q_s fluctuations improve description at small $|t|$ \sim large distance