Multi-jet production in association with an electroweak vector boson

Andreas Papaefstathiou

[based on Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

Deep Inelastic Scattering 2017, Birmingham, UK, 4th April 2017.

or: NLO-merging in V+jets

Andreas Papaefstathiou

[based on Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

Deep Inelastic Scattering 2017, Birmingham, UK, 4th April 2017.

merging in 2017

merging in 2017

Universiteit van Amsterdam

merging in 2017

- merging of multi-jet NLO+parton shower calculations very relevant:
 - achieve the "best of both worlds".
 - for many processes: the state-of-theart in Monte Carlo simulation.

contents:

- multi-jet merging @NLO,
- results,
- conclusions & outlook.

matching to NLO

- consistently **match** NLO Matrix Elements and parton showers.
- e.g.: MC@NLO, POWHEG, KrKNLO.
- MC@NLO: remove double-counting with the parton shower by subtraction of the PS contributions in the NLO.

multi-jet merging @ NLO

- the aim: consistently merge NLO Matrix Elements and parton showers.
- extend the scope of matched results to many, well-separated jets.
- several approaches exist, mostly developed in the 2010s, e.g.:
 - MiNLO, [Hamilton, Nason, Zanderighi, 1206.3572, Frederix, Hamilton, 1512.0266]
 - MEPS@NLO (Sherpa), [Gehrmann, Hoche, Krauss, Schönherr, Siegert, 1207.5031, Hoeche, Krauss, Schönherr, Siegert, 1207.5030]
 - UNLOPS (Pythia 8), [Lönnblad, Prestel, 1211.7278]
 - Herwig 7 merging (similar to UNLOPS), [Plätzer, 1211.5467, Bellm, PhD thesis + upcoming Herwig 7.1]
 - FxFx (MG5_aMC@NLO + Pythia/Herwig).

[Frederix, Frixione, 1209.6215, Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

multi-jet merging @ NLO

- the aim: consistently merge NLO Matrix Elements and parton showers.
- extend the scope of matched results to many, well-separated jets.
- several approaches exist, mostly developed in the 2010s, e.g.:
 - MiNLO, [Hamilton, Nason, Zanderighi, 1206.3572, Frederix, Hamilton, 1512.0266]
 - MEPS@NLO (Sherpa), [Gehrmann, Hoche, Krauss, Schönherr, Siegert, 1207.5031, Hoeche, Krauss, Schönherr, Siegert, 1207.5030]
 - UNLOPS (Pythia 8), [Lönnblad, Prestel, 1211.7278]
 - Herwig 7 merging (similar to UNLOPS), [Plätzer, 1211.5467, Bellm, PhD thesis + upcoming Herwig 7.1]
 - FxFx (MG5_aMC@NLO + Pythia/Herwig).

[Frederix, Frixione, 1209.6215, Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

the "FxFx" approach

[Frederix, Frixione, 1209.6215, Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

• in a nutshell:

- construct MC@NLO samples (MG5_aMC@NLO),
- suppress hard emissions by means of a function (at ME level),
- MEs also multiplied by appropriate Sudakov factors (à la CKKW),
- showered Les Houches events get MLM-type rejection (Pythia/Herwig).

technical aspects:

- 1. generate <u>a single</u> Les Houches file with "FxFx" events in MG5_aMC@NLO: contains all multiplicities
 - [+ multiple weights for each event].
- 2. Herwig 7* or Pythia 8 read files: shower, vetoing procedure + hadronization, multi-parton interactions, etc..
- 3. can use, e.g., Rivet for analysis.

* formerly known as Herwig++.

V+jets

- important as backgrounds (e.g. to Higgs, top, new physics).
- interesting in their own right:
 - high-stats at experiments,
 - theoretically simple,
 - allows to probe regions affected both by Monte Carlo & Fixed Order.
- **here**: use for pheno. validation of FxFx NLO-merging formalism.

results

[based on Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

Monte Carlo simulation details

- V+0, 1, 2 jets in FxFx-merged samples.
- used Herwig++ 2.7.1 or Pythia 8.210,
- NNPDF 2.3 NLO,
- pre-existing Monte Carlo tunes, not tuned for this PDF,
- $\alpha_S(m_Z)$ as in the MC tunes,
- all results shown here straight out of MCs, <u>no</u> rescaling applied.

"legend" for plots

purple, pink, cyan lines: results for specificmerging scales (15, 25, 45 GeV).

ATLAS Z+jets @ 7 TeV, 1304.7098

- study of jet, Z, inclusive properties,
- based on an integrated luminosity of 4.6 fb⁻¹,
- using both e^+e^- and $\mu^+\mu^-$ pairs,
- with R = 0.4 anti- k_T jets, $p_T(j) > 30$ GeV and |y(j)| < 4.4,
- further cuts: $p_T(1) \ge 20$ GeV, $66 \le M(11) \le 116$ GeV, $\Delta R(j1)$ ≥ 0.5 , $\Delta R(11) \ge 0.2$, $|\eta(\mu)| \le 2.4$, $|\eta(e)| \le 1.37$ and $1.52 \le |\eta(e)| \le 2.47$.

Z+jets @ 7 TeV, 1304.7098

CMS Z+jets @ 7 TeV, 1310.3082

- study of rapidity distributions in Z+1 jet events (i.e. exactly one jet),
- based on an integrated luminosity of 5 fb⁻¹,
- using both e^+e^- and $\mu^+\mu^-$ pairs,
- with R = 0.5 anti- k_T jets, within $p_T(j) > 30$ GeV and $|\eta(j)| < 2.4$,
- further cuts: $p_T(1) \ge 20 \text{ GeV}$, $76 \le M(11) \le 106 \text{ GeV}$, $|\eta(1)| \le 2.1$, $p_T(11) \ge 40 \text{ GeV}$, $\Delta R(j1) \ge 0.5$.

CMS Z+jets @ 7 TeV, 1310.3082

- → inclusive MC@NLO (red): substantial differences between MCs!
- → FxFx (green): good agreement, similar predictions by both.

- **→ Z+jets summary:** good agreement with data!
- presence of few hard partons: allows Monte Carlos to stay within natural range of validity.
- \rightarrow no evidence for necessity of including **Z**+3 j.

CMS, W+jets @ 7 TeV, 1406.7533

- study of jet, W, inclusive properties,
- based on an integrated luminosity of 5 fb⁻¹,
- using muon channel,
- with R = 0.5 anti-kT jets, pT(j) > 30 GeV and |y(j)| < 2.4,
- further cuts: $p_T(\mu) > 24$ GeV, $|\eta(\mu)| < 2.1$, $\Delta R(j\mu) \ge 0.5$, $m_T(\mu\nu) > 50$ GeV.

→ W+jets summary: good agreement with data, similar trend as in Z+jets.

conclusions & outlook

- samples constructed using the FxFx method describe a wide range of observables <u>very well</u>.
- it has been fully validated using Herwig(++) 7 and Pythia 8, in:
 - Z/W+jets,
 - as well as V+Higgs [see: Yellow Report 4, 1610.07922].
- future work:
 - examine top-anti-top/Higgs & comparison to 13 TeV data.

thanks for your attention!

[pictured: "merging" in the 1980s.]

appendix

further misc. MC details (I)

- hard scale: $\mu_0 = H_T/2$, (scalar sum of the transverse masses $p_T^2 + m^2$ of all final state particles),
- variations between $2\mu_0$ and $\mu_0/2$.
- cut on invariant mass of opposite sign leptons: M(11) > 40 GeV.
- consider only "dressed" leptons + enable QED radiation in MCs.
- 15 million events at LHE level.

further misc. MC details (II)

• negative weights: inclusive MC@NLO ~ 10%, FxFx ~ 25%.

cross sections:

	$\mu_Q = 15 \text{ GeV}$	$\mu_Q = 25 \text{ GeV}$	$\mu_Q = 45 \text{ GeV}$	inclusive	
Z+jets	2.055(-0.9%)	2.074	2.085(+0.5%)	2.012(-3.0%)	HW++
	2.168(+0.8%)	2.150	2.117(-1.5%)	2.011(-6.5%)	PY8
W+jets	20.60(-0.9%)	20.78	20.87(+0.4%)	19.96(-3.9%)	HW++
	21.71(+1.0%)	21.50	21.18(-1.5%)	19.97(-7.1%)	PY8

Table 2: Total rates (in nb) for the three different choices of the FxFx merging scale, as well as those for the inclusive (i.e. non-merged) samples, obtained with Herwig++ (upper rows) and Pythia8 (lower rows). Relative differences w.r.t. the FxFx results obtained with the central merging scale are also reported in brackets.

further misc. MC details (III)

vetoing efficiencies:

	$\mu_Q = 15 \text{ GeV}$	$\mu_Q = 25 \text{ GeV}$	$\mu_Q = 45 \text{ GeV}$
HERWIG++	44%(2.7)	38%(3.2)	35%(3.5)
Рутніа8	45%(4)	37%(4)	32%(4)

Table 1: Efficiencies of the MLM-type rejection in FxFx merging, rounded to the percent; in brackets, we report the corresponding oversampling factors (see the text for details).

further misc. MC details: MC tunes and α_S

- MC tunes used: Pythia 8: Monash 2013, Herwig++: UE-EE-3-CTEQ6L1.
- we used the α_S as it was given in the respective MC tunes:
 - Herwig++: α_S = 0.118, Pythia 8: α_S = 0.1365 for ISR/FSR, α_S = 0.130 for multi-parton interactions.
 - compare to "NNPDF2.3 NLO" $\alpha_S = 0.119$.
- we attempted: $\alpha_S = 0.130$ in Herwig++, $\alpha_S = 0.119$: generally worsens agreement.
- \rightarrow use the α_S values as they were in the tunes.

tuning and soft effects (I)

- ATLAS Z+jets @ 7 TeV, 1211.6899,
- measurement of the ϕ_{η}^{*} angular correlation in e⁺e⁻ and $\mu^{+}\mu^{-}$ production, [1009.1580 for definition of ϕ_{η}^{*}].
- based on an integrated luminosity of 4.6 fb $^{-1}$,
- within $p_T(1) \ge 20$ GeV, $66 \le M(11) \le 116$ GeV, and $|\eta(1)| \le 2.4$.

tuning and soft effects (II)

- \rightarrow at small ϕ_{η^*} (~low pT): merged and inclusive coincide,
- \rightarrow at small ϕ_{η}^* driven by MC, i.e. controlled by tune,
- \rightarrow at large ϕ_{η}^{\star} : predictions coincide: driven by MEs.