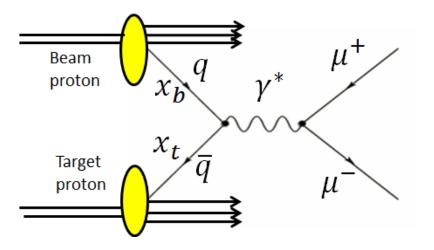

A Study of Quark Energy Loss at the Fermilab E906/SeaQuest Experiment

Po-Ju Lin University of Colorado

25th DIS, Birmingham UK April 04, 2017

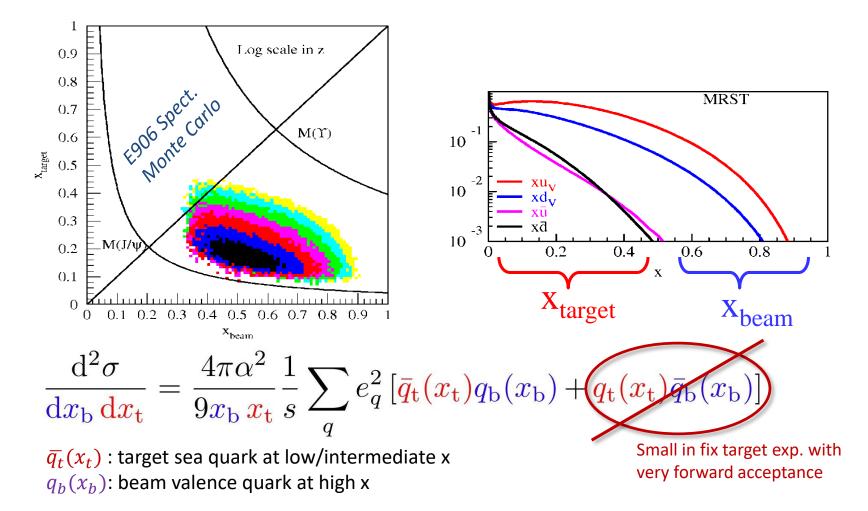
Quark Energy Loss


- Quark moves through nuclear matter and loses energy via different processes.
- Fundamental process within QCD, directly connected to nuclear property.

- Measurement in cold nuclear matter provides baseline for elucidating data of heavy-ion collisions.
- Help to investigate nuclear dependence of J/ψ , Ψ' production
- Can be ideally investigated with the Drell-Yan Process.

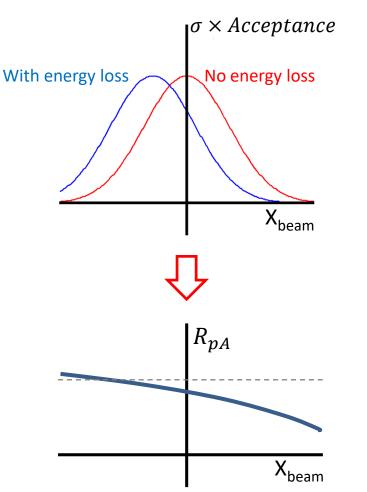
The Drell-Yan Process

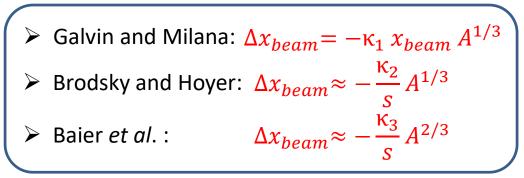
Massive Di-lepton pairs from Hadron-Hadron Collisions firstly proposed by S. D. Drell and T. M. Yan at 1970


$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x_\mathrm{b}\,\mathrm{d}x_\mathrm{t}} = \frac{4\pi\alpha^2}{9x_\mathrm{b}\,x_\mathrm{t}}\frac{1}{s}\sum_q e_q^2\left[\bar{q}_\mathrm{t}(x_\mathrm{t})q_\mathrm{b}(x_\mathrm{b}) + q_\mathrm{t}(x_\mathrm{t})\bar{q}_\mathrm{b}(x_\mathrm{b})\right]$$

 $q_t(x_t), \overline{q_t}(x_t)$: target quark, anti-quark PDF
 $q_b(x_b), \overline{q_t}(x_t)$: beam quark, anti-quark PDF

The Drell-Yan Process



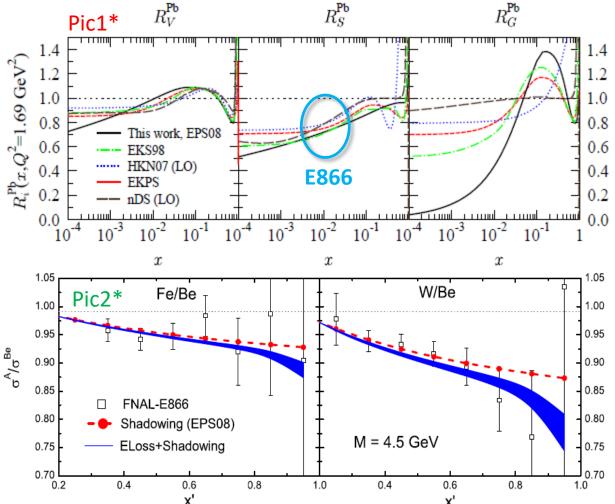

• Energy loss of the incoming quark can be studied with negligible final state interaction.

Quark Energy Loss in DY process

- Apparent kinematic values (x_{beam} or x_F) would be shifted
- Various Models:

• Expect suppression of the per-nucleon cross section ratio to be significant at high x_{beam}

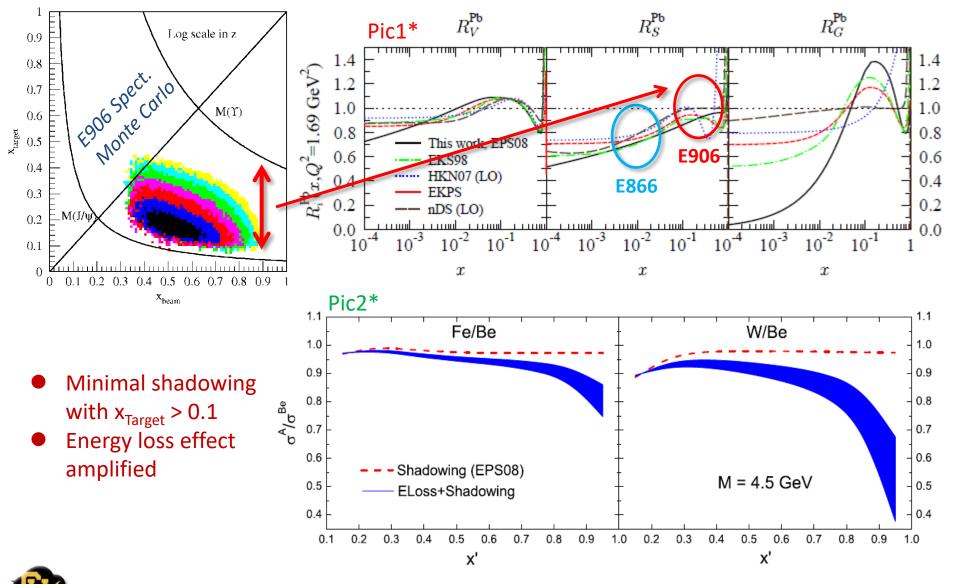
$$R_{pA} = \left(\frac{1}{A_A}\sigma(p+A)\right) / \left(\frac{1}{A_C}\sigma(p+C)\right)$$



Measurements from E866/NuSea

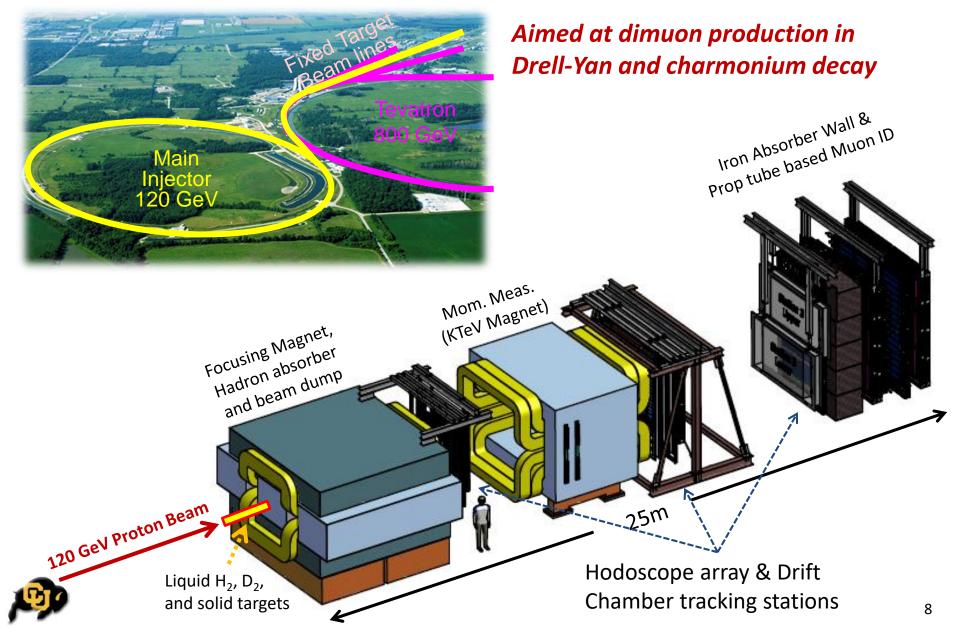
Energy Loss vs. shadowing

- Correction must be made for shadowing effect *Garvey & Peng PRL 90 (2003)*
- No partonic energy loss, all effect from shadowing Vasiliev et al., PRL 83 (1999)
- Significant parton energy loss, ~1.2 GeV/fm if all from energy loss Johnson et al., PRC 65 025203 (2002)


> E866 energy loss measurement obscured by the competing shadowing effect

Pic2* : H. Xing et al., Nuclear Physics A 879 (2012)

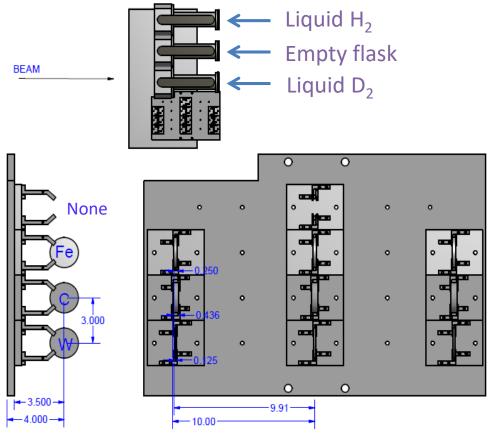
E906 Acceptance


Pic1* : K. J. Eskola et al., arXiv: 0802.0139

Pic2* : H. Xing et al., Nuclear Physics A 879 (2012)

7

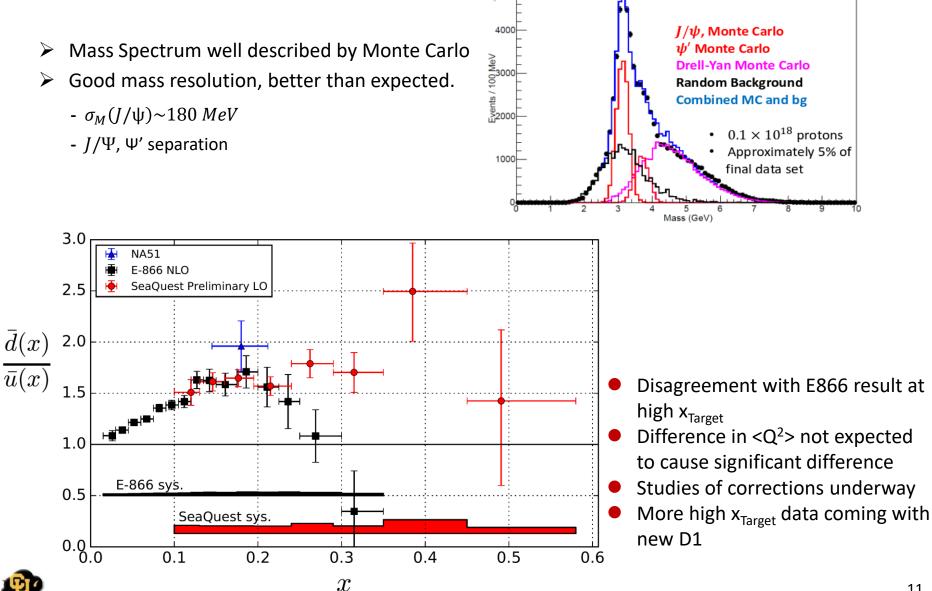
E906/SeaQuest at Fermilab




$$\frac{\chi_{y}}{Spills} \frac{M_{T}}{Cycle} \begin{pmatrix} Q \\ 10 \end{pmatrix} \begin{pmatrix} N \\ Q \\ 2 \end{pmatrix} \begin{pmatrix} N \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} N \\ 0 \end{pmatrix} \begin{pmatrix} N \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} N \\ 0 \end{pmatrix} \begin{pmatrix} N \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} N \\ 0$$

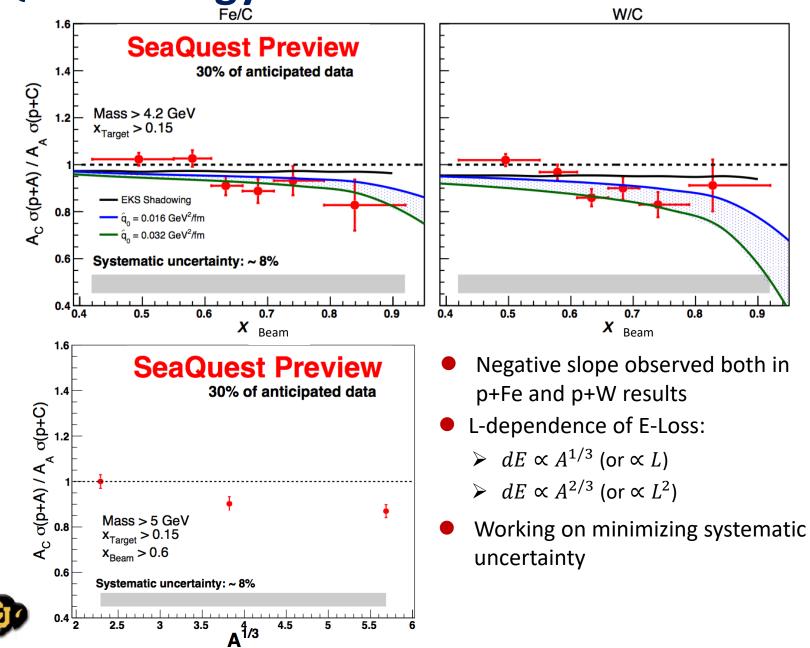
E906 Timeline

- Analyzable data starting from mid-June, 2014
- Significant beam quality improvement in mid-December, 2014
- New St.1 chamber installed in November, 2015.


Acceptance increased at higher X_{Target} and mass.

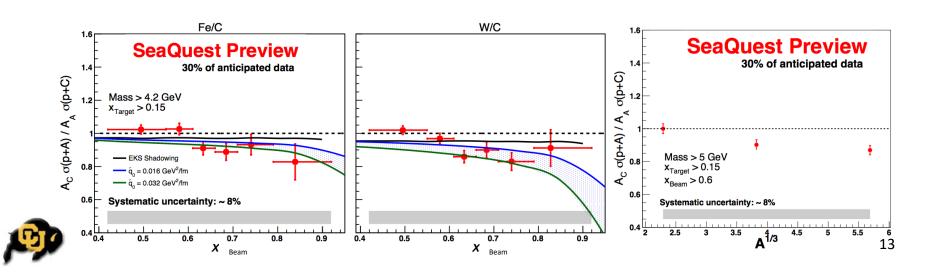
• Data taking will continue until this Summer.

E906 Data & Results



-5000

Quark Energy Loss at E906



Summary

- Quark energy loss can be ideally measured in E906
- Current result shows trend of suppression in R_{pA} at high x_{Beam}
- Other E906 measurements:
 - Sea quark distribution
 - EMC effect
 - Angular distribution of dimuons
 - J/ Ψ production, and more...
- Expecting results with higher statistics soon!

Thank you

Abilene Christian University

Ryan Castillo, Michael Daugherity, Donald Isenhower, Noah Kitts, Lacey Medlock, Noah Shutty, Rusty Towell, Shon Watson, Ziao Jai Xi

Academia Sinica

Wen-Chen Chang, Ting-Hua Chang, Shiu Shiuan-Hao

Argonne National Laboratory

John Arrington, Don Geesaman*, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, Paul E. Reimer*, Brian Tice

> University of Colorado Ed Kinney, Joseph Katich, Po-Ju Lin

Fermi National Accelerator Laboratory

Chuck Brown, Dave Christian, Su-Yin Wang, Jin-Yuan Wu

University of Illinois

Bryan Dannowitz, Markus Diefenthaler, Bryan Kerns, Hao Li, Naomi C.R Makins, Dhyaanesh Mullagur R. Evan McClellan, Jen-Chieh Peng, Shivangi Prasad, Mae Hwee Teo, Mariusz Witek, Yangqiu Yin

KEK

Shin'ya Sawada

Los Alamos National Laboratory

Gerry Garvey, Xiaodong Jiang, Andreas Klein, David Kleinjan, Mike Leitch, Kun Liu, Ming Liu, Pat McGaughey, Joel Moss Mississippi State University

Lamiaa El Fassi

University of Maryland

Betsy Beise, Yen-Chu Chen, Kazutaka Nakahara

University of Michigan

Christine Aidala, McKenzie Barber, Catherine Culkin, Vera Loggins, Wolfgang Lorenzon, Bryan Ramson, Richard Raymond, Josh Rubin, Matt Wood

National Kaohsiung Normal University

Rurngsheng Guo, Su-Yin Wang

RIKEN

Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa

Rutgers, The State University of New Jersey Ron Gilman, Ron Ransome, Arun Tadepalli

Tokyo Tech

Shou Miyaska, Kei Nagai, Kenichi Nakano, Shigeki Obata, Florian Sanftl, Toshi-Aki Shibata

Yamagata University

Yuya Kudo, Yoshiyuki Miyachi, Shumpei Nara

*Co-Spokespersons