

25th International Workshop on Deep Inelastic Scattering and Related Topics

Birmingham, England, April 3-7, 2017

Measurement of exclusive hadronic cross sections with the BABAR detector and implications on the g-2 of the muon Peter A. Lukin Budker Institute of Nuclear Physics and Novosibirsk State University On behalf of BaBar Collaboration

Outline

- Motivation: $(g-2)_{\mu}/2$
- Collider, detector and method
- Process $\pi^+\pi^-\pi^0\pi^0$
- Processes with η
- Processes with kaons and one π
- Processes with kaons and two π 's
- Total $KK\pi(\pi)$ cross sections
- Conclusion

(g-2)/2 of muon (Experiment)

Magnetic moment of Dirac particle:

 $\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$

- Gyromagnetic factor g for
 - Point-like fermions: g = 2
 - Higher order contributions (QFT): $g \neq 2$
- Muon anomaly
 - $-a_{\mu} = (g-2)_{\mu}/2$

E821 Experiment @ BNL (1997-2001): J. Muller et al., Annu. Rev. Nucl. Par S. Vo. 62(2012), 237

 $a_{\mu} = (11\ 659\ 208.9 \pm 6.3)\ 10^{-10}(0.54\ ppm)$

E989 Experiment @ FNAL (2017-...): F. Gray et al., ArXiv 1510.003[physics.ins-det] (2015)

 $a_{\mu} = ...$ (0.14 ppm)

E34 Experiment @ J-PARC (????-...): T. Mibe et al., Chin.Phys. C34 (2010) 745

 $a_{\mu} = ...$ (0.1 ppm)

(g-2)/2 of muon (Theory)

ISR @ BaBar

DIS17, University of Birmingham, England, 3-7 April 2017

Process $\pi^+\pi^-\pi^0\pi^0$ (Before BABAR)

Process $\pi^+\pi^-\pi^0\pi^0$ (After BABAR)

- **BaBar measurement:**
 - Much more precise
 - Larger energy range
- From 0.85 to 1.8 GeV:
 - Relative precision 3.3%
 - Improved by factor 2.5

 $a_{\mu}(\pi^{+}\pi^{-}2\pi^{0}) = (17.9 \pm 0.1 \pm 0.6) \ 10^{-10}$

Process $\pi^+\pi^-\eta$

- $\eta \rightarrow \gamma \gamma$ decay is used
- The most precise measurement
- Extending energy range up 3.5 GeV
- $a_{\mu}^{had LO}(\sqrt{s} < 1.8 \text{ GeV}) = (1.18 \pm 0.06) \cdot 10^{-10}$

Systematic uncertainty is (4.5-12)%

Process K_LK_Sη

First measurement of this cross section

Process K_SK[±]π[∓]η

Process KLKsπ⁰

Process KLKsπ⁰π⁰

DIS17, University of Birmingham, England, 3-7 April 2017

Process K_SK[±]\pi^{\mp}\pi^{0}

Substructures in K_S K^{\pm} \pi^{\mp} \pi^0

All K^{*}(892)Kπ signals include also signals from K^{*}(892)K^{*}(892)

Total KK $\pi(\pi)$ cross sections

- All modes have now been measured by BABAR
- KK π is about 12% of the total cross section for $E_{cm} = 1.65$ GeV
- KK $\pi\pi$ is about 25% of the total cross section for $E_{cm} = 2.0$ GeV
- Precision on (g-2)/2 improved (no reliance on isospin) $a_{\mu}(KK\pi) = (2.45 \pm 0.15) \, 10^{-10}$ $a_{\mu}(KK\pi\pi) = (0.85 \pm 0.05) \, 10^{-10}$

Conclusion

- Using ISR technique BABAR does precision studies of low energy e⁺e⁻ annihilation.
- All KKπ and KKππ modes now directly measured by BABAR.
 No isospin relations needed any more for cross sections and dispersion relations.
- Resonant substructures explored with $\mathcal{O}(10^2-10^3)$ events.
- Contributions to a_{μ} :

 $a_{\mu}(\pi^{+}\pi^{-}\pi^{0}\pi^{0}) = (17.4\pm0.6) 10^{-10}$

 $a_{\mu}(KK\pi) = (2.45\pm0.15) \ 10^{-10} \ a_{\mu}(KK\pi\pi) = (0.85\pm0.05) \ 10^{-10}$

• Improvement of the total $a_{\mu}^{had LO}$ prediction:

DHMZ 2011Tau2016 Conference(692.3 \pm 4.2) 10^{-10} (692.8 \pm 3.3) 10^{-10}