Quarkonia as a tool to measure Double Parton Scatterings, gluon TMDs and (n)PDFs

Jean-Philippe Lansberg
IPN Orsay, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay

3-7 April 2017, University of Birmingham

[Work done in collaboration with
M.G. Echevarria, T. Kasemets, C. Pisano, F. Scarpa, M. Schlegel, H.S. Shao, A. Signori]
Part I

Quick introduction
Production Models: the current situation in one slide...

- Colour-Singlet Model (CSM) back in the game
 - Large NLO and NNLO correction to the P_T spectrum; but not perfect

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
 - Yet, the COM NLO/its differ a lot in their conclusions owing to their assumptions (dataset, P_T cut, polarisation/fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data
 - This motivates the study of new observables which can be more discriminant for specific effects

- Yet, quarkonium hadro production remains a very sensitive probe of the gluon content of the proton

J.P. Lansberg (IPNO)
Production Models: the current situation in one slide …

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

Production Models: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

Production Models: the current situation in one slide ...

- **Colour-Singlet Model (CSM) back in the game**
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- **CSM was always in the game for the P_T integrated yield**

- **Colour-Octet Mechanism (COM) helps in describing the P_T spectrum**
Production Models: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
Production Models: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
[large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data
Production Models: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data

- This motivates the study of new observables which can be more discriminant for specific effects
Colour-Singlet Model (CSM) back in the game

[large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

CSM was always in the game for the P_T integrated yield

Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

All approaches have troubles in describing the polarisation and/or the η_c data

This motivates the study of new observables which can be more discriminant for specific effects

Yet, quarkonium hadroproduction remains a very sensitive probe of the gluon content of the proton
Part II

Quarkonia as probes of the glue
New: an automated code to evaluate the impact of nuclear PDF on hard probes

New: an automated code to evaluate the impact of nuclear PDF on hard probes

- **Partonic scattering cross section fit from** pp data **fit with a Crystal Ball function**
 parametrising \(|A_{gg \rightarrow HX}|^2 \)

New: an automated code to evaluate the impact of nuclear PDF on hard probes

- Partonic scattering cross section fit from \(pp \) data with a Crystal Ball function parametrising \(|A_{gg \rightarrow HX}|^2 \)
- A way to evade the quarkonium-production-mechanism controversy?

 To some extent, I would say ”yes”.

New: an automated code to evaluate the impact of nuclear PDF on hard probes

- **Partonic scattering cross section fit from \(pp \) data** with a Crystal Ball function parametrising \(|A_{gg \to \mu X}|^2 \)

- **A way to evade the quarkonium-production-mechanism controversy?**
 To some extent, I would say "yes".

- **Applied to \(J/\psi, Y, D \) and \(B \):** it can be extended to all the probes produced in \(2 \to 2 \) partonic processes with a single partonic contribution

J.P. Lansberg (IPNO) Quarkonia as a tool April 5, 2017 5 / 22
New: an automated code to evaluate the impact of nuclear PDF on hard probes

- **Partonic scattering cross section fit from** pp **data** with a Crystal Ball function parametrising $|A_{gg \to HX}|^2$
- **A way to evade the quarkonium-production-mechanism controversy?** To some extent, I would say "yes".
- **Applied to** J/ψ, Υ, D **and** B: it can be extended to all the probes produced in $2 \rightarrow 2$ partonic processes with a single partonic contribution
- **Any nuclear PDF set available in LHAPDF5 or 6 can be used**
New: an automated code to evaluate the impact of nuclear PDF on hard probes

- **Partonic scattering cross section fit from \(pp \) data** with a Crystal Ball function parametrising \(|A_{gg \rightarrow HX}|^2 \)
- **A way to evade the quarkonium-production-mechanism controversy?**

 To some extent, I would say "yes".
- **Applied to \(J/\psi, \Upsilon, D \) and \(B \): it can be extended to all the probes produced in \(2 \rightarrow 2 \) partonic processes with a single partonic contribution**
- **Any nuclear PDF set available in LHAPDF5 or 6 can be used**
- **Extensive comparisons directly with data**, which make sense, provided that nPDF are the only nuclear effect
- Conversely, one can test this hypothesis by comparing our curves with data → global agreement?
New: an automated code to evaluate the impact of nuclear PDF on hard probes

- Partonic scattering cross section fit from pp data with a Crystal Ball function parametrising $|A_{gg \to HX}|^2$
- A way to evade the quarkonium-production-mechanism controversy?

 To some extent, I would say ”yes”.
- Applied to J/ψ, Υ, D and B: it can be extended to all the probes produced in $2 \to 2$ partonic processes with a single partonic contribution
- Any nuclear PDF set available in LHAPDF5 or 6 can be used
- Extensive comparisons directly with data, which make sense, provided that nPDF are the only nuclear effect
- Conversely, one can test this hypothesis by comparing our curves with data → global agreement?
- Bonus: since the pp yields are fit, the procedure sometimes hints at normalisation issues (absent in R_{FB}) which could otherwise be misinterpreted as nuclear suppressions/enhancements
New: an automated code to evaluate the impact of nuclear PDF on hard probes

- **Partonic scattering cross section fit from pp data** with a Crystal Ball function parametrising $|A_{gg\rightarrow \mathcal{H}X}|^2$

- **A way to evade the quarkonium-production-mechanism controversy?**
 To some extent, I would say "yes".

- **Applied to J/ψ, Υ, D and B:** it can be extended to all the probes produced in $2 \rightarrow 2$ partonic processes with a single partonic contribution

- **Any nuclear PDF set available in LHAPDF5 or 6 can be used**

- **Extensive comparisons directly with data,** which make sense, provided that nPDF are the only nuclear effect

- **Conversely, one can test this hypothesis by comparing our curves with data**
 → global agreement?

- **Bonus:** since the pp yields are fit, the procedure sometimes hints at normalisation issues (absent in R_{FB}) which could otherwise be misinterpreted as nuclear suppressions/enhancements

- **Last but not least:** the automation of the evaluation allows one to study different nPDF sets AND the scale uncertainties: better control of the theory uncertainties
Some comparisons [top left by us; 3 other shown at QM2017]
Part III

New observables in quarkonium production
New observables: what for?

<table>
<thead>
<tr>
<th>Observables</th>
<th>Experiments</th>
<th>CSM</th>
<th>CEM</th>
<th>NRQCD</th>
<th>Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi + J/\psi$</td>
<td>LHCb, CMS, ATLAS, D0 (+NA3)</td>
<td>NLO, NNLO*</td>
<td>LO ?</td>
<td>LO</td>
<td>Prod. Mechanism (CS dominant) + DPS</td>
</tr>
<tr>
<td>$J/\psi + D$</td>
<td>LHCb</td>
<td>LO</td>
<td>LO ?</td>
<td>LO</td>
<td>Prod. Mechanism (c to J/ψ fragmentation) + DPS</td>
</tr>
<tr>
<td>$J/\psi + \Upsilon$</td>
<td>D0</td>
<td>(N)LO</td>
<td>LO ?</td>
<td>LO</td>
<td>Prod. Mechanism (CO dominant) + DPS</td>
</tr>
<tr>
<td>$J/\psi + \text{hadron}$</td>
<td>STAR</td>
<td>LO</td>
<td>--</td>
<td>LO</td>
<td>B feed–down; Singlet vs Octet radiation</td>
</tr>
<tr>
<td>$J/\psi + Z$</td>
<td>ATLAS</td>
<td>NLO</td>
<td>NLO</td>
<td>Partial NLO</td>
<td>Prod. Mechanism + DPS</td>
</tr>
<tr>
<td>$J/\psi + W$</td>
<td>ATLAS</td>
<td>LO</td>
<td>LO ?</td>
<td>Partial NLO</td>
<td>Prod. Mechanism (CO dominant) + DPS</td>
</tr>
<tr>
<td>$J/\psi \text{ vs mult.}$</td>
<td>ALICE,CMS (+UA1)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>$J/\psi + b$</td>
<td>-- (LHCb, D0, CMS ?)</td>
<td>--</td>
<td>--</td>
<td>LO</td>
<td>Prod. Mechanism (CO dominant) + DPS</td>
</tr>
<tr>
<td>$\Upsilon + D$</td>
<td>LHCb</td>
<td>LO</td>
<td>LO ?</td>
<td>LO</td>
<td>DPS</td>
</tr>
<tr>
<td>$\Upsilon + \Upsilon$</td>
<td>--</td>
<td>NLO, NNLO*</td>
<td>LO ?</td>
<td>LO</td>
<td>Prod. Mechanism (CO LDME mix) + gluon TMD/PDF</td>
</tr>
<tr>
<td>$\Upsilon \text{ vs mult.}$</td>
<td>CMS</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>$\Upsilon + Z$</td>
<td>--</td>
<td>NLO</td>
<td>LO ?</td>
<td>LO</td>
<td>Prod. Mechanism + DPS</td>
</tr>
<tr>
<td>$\Upsilon + \Upsilon$</td>
<td>CMS</td>
<td>NLO ?</td>
<td>LO ?</td>
<td>LO</td>
<td>Prod. Mechanism (CS dominant ?) + DPS</td>
</tr>
</tbody>
</table>
Part IV

$Z+$prompt J/ψ
Our re-analysis of $Z+\text{prompt } J/\psi$ at NLO and with DPS

- **Significant tensions** between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions
Our re-analysis of $Z+$prompt J/ψ at NLO and with DPS

- **Significant tensions** between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta\phi$ distributions
- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter P_ψ^{prompt} fit to the latest single-J/ψ ATLAS data at 8 TeV.
Our re-analysis of $Z+\text{prompt } J/\psi$ at NLO and with DPS

- **Significant tensions** between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions
- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter P_{ψ}^{prompt} fit to the latest single-J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.
Our re-analysis of $Z+\text{prompt } J/\psi$ at NLO and with DPS

- Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta\phi$ distributions.

- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter P_ψ^{prompt} fit to the latest single-J/ψ ATLAS data at 8 TeV.

- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.

- We obtain

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>LO CEM SPS</th>
<th>NLO CEM SPS</th>
<th>DPS ($\sigma_{\text{eff}} \approx 15 \text{ mb}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS inclusive</td>
<td>$63 \pm 13 \pm 5 \pm 10$</td>
<td>$4.1^{+1.3}_{-1.0}$</td>
<td>$7.6^{+2.0}_{-1.6}$</td>
<td>17</td>
</tr>
<tr>
<td>ATLAS fiducial</td>
<td>$36.8 \pm 6.7 \pm 2.5$</td>
<td>$2.2^{+0.7}_{-0.6}$</td>
<td>$4.2^{+1.1}_{-0.9}$</td>
<td>7</td>
</tr>
<tr>
<td>CMS fiducial</td>
<td>–</td>
<td>$3.9^{+1.3}_{-0.9}$</td>
<td>$7.5^{+2.0}_{-1.6}$</td>
<td>16</td>
</tr>
</tbody>
</table>

The theoretical uncertainty for the (N)LO SPS is from the renormalisation and factorisation scales. All quantities are in units of 10^{-7}.

Our re-analysis of $Z + \text{prompt } J/\psi$ at NLO and with DPS

- Significant tensions between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions
- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter P^{prompt}_ψ fit to the latest single-J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.
- We obtain

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>LO CEM SPS</th>
<th>NLO CEM SPS</th>
<th>DPS ($\sigma_{\text{eff}} \approx 15 \text{ mb}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS inclusive</td>
<td>$63 \pm 13 \pm 5 \pm 10$</td>
<td>$4.1^{+1.3}_{-1.0}$</td>
<td>$7.6^{+2.0}_{-1.6}$</td>
<td>17</td>
</tr>
<tr>
<td>ATLAS fiducial</td>
<td>$36.8 \pm 6.7 \pm 2.5$</td>
<td>$2.2^{+0.7}_{-0.6}$</td>
<td>$4.2^{+1.1}_{-0.9}$</td>
<td>7</td>
</tr>
<tr>
<td>CMS fiducial</td>
<td>–</td>
<td>$3.9^{+1.3}_{-0.9}$</td>
<td>$7.5^{+2.0}_{-1.6}$</td>
<td>16</td>
</tr>
</tbody>
</table>

The theoretical uncertainty for the (N)LO SPS is from the renormalisation and factorisation scales. All quantities are in units of 10^{-7}.

- This gives a 2σ discrepancy with a DPS contribution set by $\sigma_{\text{eff}} = 15 \text{ mb}$
Our re-analysis of Z+prompt J/ψ at NLO and with DPS

- **Significant tensions** between the ATLAS measurement and the SPS NRQCD yields: normalisation, P_T and $\Delta \phi$ distributions.

- We employ a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_\psi^{\text{prompt}}$ fit to the latest single-J/ψ ATLAS data at 8 TeV.

- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an **upper SPS limit**.

- We obtain

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>LO CEM SPS</th>
<th>NLO CEM SPS</th>
<th>DPS ($\sigma_{\text{eff}} \simeq 15 \text{ mb}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS inclusive</td>
<td>63 ± 13 ± 5 ± 10</td>
<td>4.1$^{+1.3}_{-1.0}$</td>
<td>7.6$^{+2.0}_{-1.6}$</td>
<td>17</td>
</tr>
<tr>
<td>ATLAS fiducial</td>
<td>36.8 ± 6.7 ± 2.5</td>
<td>2.2$^{+0.7}_{-0.6}$</td>
<td>4.2$^{+1.1}_{-0.9}$</td>
<td>7</td>
</tr>
<tr>
<td>CMS fiducial</td>
<td>–</td>
<td>3.9$^{+1.3}_{-0.9}$</td>
<td>7.5$^{+2.0}_{-1.6}$</td>
<td>16</td>
</tr>
</tbody>
</table>

The theoretical uncertainty for the (N)LO SPS is from the renormalisation and factorisation scales. All quantities are in units of 10^{-7}.

- This gives a **2-\sigma discrepancy** with a DPS contribution set by $\sigma_{\text{eff}} = 15 \text{ mb}$

- This naturally points at a smaller σ_{eff} (as other onium related data), but the $\Delta \phi$ distribution shows a peak at $\Delta \phi \simeq \pi \rightarrow$ SPS dominance ???
Issue with the azimuthal distribution?

It is important to note that what was shown by ATLAS is a raw yield distribution. Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.

Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominates at low P_T and SPS at large P_T.

$\frac{Br(J/\psi \rightarrow \mu^+\mu^-)}{\sigma(Z)d\sigma(J/\psi+Z)/dp_T}$

Prompt $J/\psi + Z$ production at 8 TeV LHC

DPS: $\sigma_{eff} = 4.7$ mb

Assumption: $B/S = 17/p_T(J/\psi)$

Events ($\pi/5$)

$\Delta \phi(Z,J/\psi)$

Prompt $J/\psi + Z$ production at 8 TeV LHC

DPS: $\sigma_{eff} = 4.7$ mb

Assumption: $B/S = 17/p_T(J/\psi)$

NLO CEM SPS

DPS

NLO CEM SPS+DPS

ATLAS data

10^{-11}

10^{-10}

10^{-9}

10^{-8}

10^{-7}

10^{-6}

10^{-5}
Issue with the azimuthal distribution?

- It is important to note that what was shown by ATLAS is a raw yield distribution.
- Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.

\[\text{Br}(J/\psi \rightarrow \mu^+ \mu^-) / \sigma (Z) \text{d} \sigma (J/\psi + Z) / dp_T \text{ [GeV}^{-1}] \]

\[p_T (J/\psi) \text{ [GeV]} \]

Prompt $J/\psi + Z$ production at 8 TeV LHC.

DPS: $\sigma_{\text{eff}} = 4.7 \text{ mb}$

Assumption: $B/S = 17/p_T (J/\psi)$

NLO CEM SPS
DPS
NLO CEM SPS+DPS
ATLAS data
Issue with the azimuthal distribution?

- It is important to note that what was shown by ATLAS is a raw yield distribution.
- Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

[Thin blue histogram vs. the light red one]
Issue with the azimuthal distribution?

- It is important to note that what was shown by ATLAS is a raw yield distribution.
- Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

[Thin blue histogram vs. the light red one]

- Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that?
Issue with the azimuthal distribution?

- It is important to note that what was shown by ATLAS is a raw yield distribution.
- Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

[Thin blue histogram vs. the light red one]

- Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that? YES!

J.P. Lansberg (IPNO)
Issue with the azimuthal distribution?

- It is important to note that what was shown by ATLAS is a raw yield distribution.
- Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

[Thin blue histogram vs. the light red one]

Can the $\Delta \phi$ peak (with only 1/6 of SPS events overall) be due to that? **YES!**

The last plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency, and it works.
Issue with the azimuthal distribution?

- It is important to note that what was shown by ATLAS is a **raw yield distribution**.
- Since their efficiency is larger at large P_T, large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, **DPS dominate at low P_T and SPS at large P_T**.

![Prompt J/ψ+Z production at 8 TeV LHC](image)

- Br(J/ψ→$\mu^+\mu^-$) / $\sigma(Z)d\sigma(J/\psi+Z)/dp_T$ [GeV$^{-1}$]
- $p_T(J/\psi)$ [GeV]

Prompt J/ψ+Z production at 8 TeV LHC

- DPS: $\sigma_{eff}=4.7$ mb
- Assumption: $B/S=17/p_T(J/\psi)$

![Events (π/5)
∆φ(Z,J/ψ)]

- Can the $\Delta\phi$ peak (with only 1/6 of SPS events overall) be due to that? **YES!**
- The last plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency, and it **works**.
- We are waiting for an ATLAS update to confirm our explanation.
Part V

$Z + \text{non-prompt } J/\psi$
Our analysis of $Z+\text{non-prompt } J/\psi$ at NLO and with DPS

Our analysis of $Z+$non-prompt J/ψ at NLO and with DPS

- In the same analysis, ATLAS reported on $Z+$non-prompt J/ψ.
Our analysis of $Z+$non-prompt J/ψ at NLO and with DPS

- In the same analysis, ATLAS reported on $Z+$non-prompt J/ψ.
- This gives an original handle on $Z + b$ at lower P_T than b-jets
In the same analysis, ATLAS reported on Z+non-prompt J/ψ.
This gives an original handle on $Z + b$ at lower P_T than b-jets.
Interesting check that nothing went wrong with the prompt analysis.
Our analysis of \(Z+\text{non-prompt} \ J/\psi\) at NLO and with DPS

- In the same analysis, ATLAS reported on \(Z+\text{non-prompt} \ J/\psi\).
- This gives an original handle on \(Z + b\) at lower \(P_T\) than \(b\)-jets.
- Interesting check that nothing went wrong with the prompt analysis.
- SPS predictions were absent at the time of the publication. We filled this gap using MadGraph5_aMC@NLO and Pythia 8.1.

Differential cross section/distributions for non-prompt \(J/\psi + Z\) production: \(p_T\) distribution of \(J/\psi\) (left) and azimuthal angle distribution (right).

Good agreement. Owing to the data uncertainties at low \(P_T\), we cannot constrain \(\sigma_{\text{eff}}\) more than with a lower limit, 5.0 mb, at 68 \% CL.
Part VI

Quarkonium-pair production
On the importance of QCD corrections: P_T enhanced topologies

At Born (LO) order, the $P_{T\Psi\Psi}$ spectrum is $\delta(P_{T\Psi\Psi})$: 2 → 2 topologies
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 → 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

![Graph showing $d\sigma/dP_T^{\psi\psi}$ vs $P_T^{\psi\psi}$]
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 → 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

α_s^5 contributions (green) are crucial here and do a good job even at $P_T^{\psi\psi} \sim 30 \text{ GeV}$
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{ψψ}$ spectrum is $δ(P_T^{ψψ})$: 2 → 2 topologies.
 - It can be affected by initial parton k_T [↔ interest for TMD studies].
 - By far insufficient (blue) to account for the CMS measured spectrum.

\begin{itemize}
 \item $α_s^5$ contributions (green) are crucial here and do a good job even at $P_T^{ψψ} \approx 30$ GeV.
 \item Slight offset up to $P_T^{ψψ} \approx 20$ GeV [about a factor 2, but well within error bars].
\end{itemize}
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

- α_s^5 contributions (green) are crucial here and do a good job even at $P_T^{\psi\psi} \approx 30$ GeV
- Slight offset up to $P_T^{\psi\psi} \approx 20$ GeV [about a factor 2, but well within error bars]
- We do not expect NNLO (α_s^6) contributions to matter where one currently has data [the orange histogram shows one class of leading $P_T \alpha_s^6$ contributions]
The so-called CMS puzzle

\[\frac{d\sigma}{d|\Delta y|} \text{(nb)} \]

\[\text{d}\sigma/\text{d}M_{\psi\psi} \text{(nb/GeV)} \]

7 TeV@LHC CMS Accep.

\[M_{\psi\psi} \text{(GeV)} \]
The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \sim 2m_T^{\psi} \cosh \frac{\Delta y}{2}$
The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_T \cosh \frac{\Delta y}{2}$
- Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

[At $\Delta y = 3.5$ and $P_T = 6$ GeV, $M_{\psi\psi} \approx 40$ GeV.]
At $P_{T}^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_{T}^{\psi} \cosh \frac{\Delta y}{2}$

Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

[At $\Delta y = 3.5$ and $P_{T} = 6$ GeV, $M_{\psi\psi} \approx 40$ GeV.]

The most natural solution for this excess is the independent production of two J/ψ

\rightarrow double parton scattering
The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \simeq 2m_T^\psi \cosh \frac{\Delta y}{2}$

- Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

 [At $\Delta y = 3.5$ and $P_T = 6$ GeV, $M_{\psi\psi} \simeq 40$ GeV.]

- The most natural solution for this excess is the independent production of two J/ψ

 \rightarrow double parton scattering

- Predictions for LHCb, $\text{DPS} \gg \text{SPS}$ at large Δy

The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_T^\psi \cosh \frac{\Delta y}{2}$
- Large Δy, i.e. large relative *longitudinal* momenta, correspond to large $M_{\psi\psi}$.

\[\text{At } \Delta y = 3.5 \text{ and } P_T = 6 \text{ GeV, } M_{\psi\psi} \approx 40 \text{ GeV.}\]

- The most natural solution for this excess is the independent production of two J/ψ \rightarrow double parton scattering

- Predictions for LHCb, DPS \gg SPS at large Δy
- He & Kniehl found at LO that CO \gg CS at large Δy; yet still in disagreement with the data; NLO needed!

Z. He, B. Kniehl PRL 115, 022002 (2015)
On the importance of double parton scatterings at large Δy

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions.
On the importance of double parton scatterings at large Δy

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions.

- The DPS MC template is obtained from $\sigma^{DPS} = \frac{1}{2} \frac{\sigma_\psi \sigma_\psi}{\sigma_{eff}}$.

D0 Coll. PRD 90 (2014) 111101
On the importance of double parton scatterings at large Δy

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions

- The DPS MC template is obtained from $\sigma^{\text{DPS}} = \frac{1}{2} \frac{\sigma_\psi \sigma_\psi}{\sigma_{\text{eff}}}$
- Fitting these MC templates, they splitted 129 ± 46 fb into $\sigma^{\text{DPS}} = 70 \pm 23$ fb and $\sigma^{\text{SPS}} = 59 \pm 23$ fb by comparing the histograms
- $\sigma_{\text{CSM}}^{\text{SPS}} = 170^{+340}_{-110}$ fb and $\sigma_{D0}^{\text{SPS}} = 59 \pm 23$ fb are still compatible at 1-σ level
On the importance of double parton scatterings at large Δy

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions.

- The DPS MC template is obtained from $\sigma^{\text{DPS}} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\text{eff}}}$.
- Fitting these MC templates, they splitted 129 ± 46 fb into $\sigma^{\text{DPS}} = 70 \pm 23$ fb and $\sigma^{\text{SPS}} = 59 \pm 23$ fb by comparing the histograms.
- $\sigma^{\text{SPS}}_{\text{CSM}} = 170^{+340}_{-110}$ fb and $\sigma^{\text{SPS}}_{\text{D0}} = 59 \pm 23$ fb are still compatible at 1-\sigma level.
- In turn, they obtained $\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb}$.
On the importance of double parton scatterings at large Δy I

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions

The DPS MC template is obtained from $\sigma_{DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{eff}}$.

Fitting these MC templates, they splitted 129 ± 46 fb into $\sigma_{DPS} = 70 \pm 23$ fb and $\sigma_{SPS} = 59 \pm 23$ fb by comparing the histograms.

$\sigma_{CSM}^{SPS} = 170^{+340}_{-110}$ fb and $\sigma_{D0}^{SPS} = 59 \pm 23$ fb are still compatible at 1-σ level.

In turn, they obtained $\sigma_{eff} = 4.8 \pm 2.5$ mb.

A question arises: using $\sigma_{DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{eff}}$ and $\sigma_{eff} = 4.8 \pm 2.5$ mb, can one account for the large Δy CMS data?
On the importance of double parton scatterings at large Δy II

Let us investigate the consistency between D/zero.fitted and CMS data.

For that we assume:

$$\sigma_{DPS}/one.fitted = \sigma_{five.fitted}$$

We take $\sigma_{eff}/four.fitted = \sigma_{eight.fitted}/two.fitted$.

$\sigma_{\psi\psi}$ are fitted from data with a Crystal Ball function parametrising $S_{AA}g\psi\psi$.

Gap between theory and CMS data is large and $M_{\psi\psi}$ by DPS+NLO

Agreement not altered elsewhere; improved even at low P_T (see (a)).

Conversely, σ_{eff} from our own CMS dataset yields $\sigma_{nine.fitted}$.

Fit done prior the ATLAS analysis good agreement!
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data
- For that we assume: $\sigma_{\text{DPS}} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\text{eff}}}$
- We take $\sigma_{\text{eff}} = 4.8 \pm 2.5$ mb from D0
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data
- For that we assume: $\sigma^{\text{DPS}} = \frac{1}{2} \frac{\sigma_\psi \sigma_\psi}{\sigma_{\text{eff}}}$
- We take $\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb}$ from D0
- σ_ψ are fit from data with a Crystal Ball function parametrising $|A_{gg\rightarrow \psi X}|^2$

Let us investigate the consistency between D0 and CMS data.

For that we assume: \(\sigma_{\text{DPS}} = \frac{1}{2} \frac{\sigma_{\psi}}{\sigma_{\text{eff}}} \)

We take \(\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb} \) from D0

\(\sigma_{\psi} \) are fit from data with a Crystal Ball function parametrising \(|A_{g g \to \psi X}|^2 \)

Gap between theory and CMS data is filled at large \(\Delta y \) and \(M_{\psi \psi} \) by DPS + NLO* CSM SPS
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data
- For that we assume: $\sigma_{DPS} = \frac{1}{2} \sigma_\psi \sigma_\psi / \sigma_{eff}$
- We take $\sigma_{eff} = 4.8 \pm 2.5$ mb from D0
- σ_ψ are fit from data with a Crystal Ball function parametrising $|A_{gg\rightarrow \psi X}|^2$

- Gap between theory and CMS data is filled at large Δy and $M_{\psi\psi}$ by DPS + NLO* CSM SPS
- Agreement not altered elsewhere; improved even at low $P_T^{\psi\psi}$ (see (a))
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data
- For that we assume: $\sigma^{DPS} = \frac{1}{2} \frac{\sigma_\psi \sigma_\psi}{\sigma_{\text{eff}}}$
- We take $\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb}$ from D0
- σ_ψ are fit from data with a Crystal Ball function parametrising $|A_{gg\rightarrow \psi X}|^2$

- Gap between theory and CMS data is filled at large Δy and $M_{\psi\psi}$ by DPS + NLO* CSM SPS
- Agreement not altered elsewhere; improved even at low $P_T^{\psi\psi}$ (see (a))
- Conversely, fitting our own σ_{eff} from the CMS data yields $8.2 \pm 2.0 \pm 2.9 \text{ mb}$
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data.
- For that we assume: $\sigma^{\text{DPS}} = \frac{1}{2} \frac{\sigma_\Psi \sigma_\Psi}{\sigma_{\text{eff}}}$
- We take $\sigma_{\text{eff}} = 4.8 \pm 2.5$ mb from D0.
- σ_Ψ are fit from data with a Crystal Ball function parametrising $|A_{gg\to \Psi X}|^2$.

- Gap between theory and CMS data is filled at large Δy and $M_{\Psi\Psi}$ by DPS + NLO* CSM SPS.
- Agreement not altered elsewhere; improved even at low $P_T^{\Psi\Psi}$ (see (a)).
- Conversely, fitting our own σ_{eff} from the CMS data yields $8.2 \pm 2.0 \pm 2.9$ mb.
- Fit done prior the ATLAS analysis → good agreement!
Predictions: excited states

Eventhoughwe inditanatural,accountingfor DPS introduces another parameter

How to check that one is not playing with a further d.o.f. on the theory side?

DPS vs SPS dominance are characterised by different feed-down patterns

We define $F_{\chi c}$ as the fraction of events containing at least one $\chi c | \psi \psi$.

Under DPS dominance (e.g., large Δy),

$$\frac{\sigma_{DPS, ab}}{\sigma a \sigma b} \approx \frac{\sigma_{eff}}{\sigma eff} \quad (m: symmetry factor)$$

$$F_{\chi c} \approx \frac{\sigma_{direct}}{\sigma_{direct}}$$

Under SPS dominance, $\psi \psi$ is slightly enhanced by symmetry factors, $F_{\chi c} \psi \psi$, unlike single quarkonium production, is not enhanced and is found to be small.

Overall:

$$(CSM)_{SPS} \quad \frac{\sigma_{DPS}}{\sigma_{SPS}}$$
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter.
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
Even though we find it a natural, accounting for DPS introduces another parameter.

How to check that one is not playing with a further d.o.f. on the theory side?

DPS vs SPS dominance are characterised by different feed-down patterns.

We define $F^{\chi_c}_{\psi\psi}$ ($F^{\psi'}_{\psi\psi}$) as the fraction of events containing at least one χ_c (ψ').
Even though we find it a natural, accounting for DPS introduces another parameter.

How to check that one is not playing with a further d.o.f. on the theory side?

DPS vs SPS dominance are characterised by different feed-down patterns.

We define $F_{\Psi\psi}^{\chi_c}$ ($F_{\Psi\psi}^{\psi'}$) as the fraction of events containing at least one χ_c (ψ').

Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}} \ (m: \text{symmetry factor})$

$$F_{\Psi\psi}^{\chi_c} = F_{\Psi\psi}^{\chi_c} \times \left(F_{\Psi\psi}^{\chi_c} + 2 F_{\Psi}^{\text{direct}} + 2 F_{\Psi}^{\psi'} \right), \quad F_{\Psi\psi}^{\psi'} = F_{\Psi\psi}^{\Psi} \times \left(F_{\Psi}^{\psi'} + 2 F_{\Psi}^{\text{direct}} + 2 F_{\Psi}^{\chi_c} \right), \quad F_{\Psi\psi}^{\text{direct}} = (F_{\Psi}^{\text{direct}})^2$$
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c} (F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one $\chi_c (\psi')$
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}} \ (m: \text{symmetry factor})$

$$F_{\psi\psi}^{\chi_c} = F_{\psi\psi}^{\chi_c} \times (F_{\psi\psi}^{\chi_c} + 2F_{\psi\psi}^{\text{direct}} + 2F_{\psi\psi}^{\psi'}) \, , \quad F_{\psi\psi}^{\psi'} = F_{\psi\psi}^{\psi'} \times (F_{\psi\psi}^{\psi'} + 2F_{\psi\psi}^{\text{direct}} + 2F_{\psi\psi}^{\chi_c}) \, , \quad F_{\psi\psi}^{\text{direct}} = (F_{\psi\psi}^{\text{direct}})^2$$

- Under SPS CSM dominance,
 - $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
 - $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define \(F_{\psi\psi}^{\chi_c} (F_{\psi\psi}^\psi) \) as the fraction of events containing at least one \(\chi_c \) (\(\psi' \))
- Under DPS dominance (e.g. large \(\Delta y \)), \(\sigma_{ab}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}} \) (\(m \): symmetry factor)

\[
F_{\psi\psi}^{\chi_c} = F_{\psi\psi}^{\chi_c} \times (F_{\psi\psi}^{\chi_c} + 2F_{\psi\psi}^{\text{direct}} + 2F_{\psi\psi}^\psi), \quad F_{\psi\psi}^\psi = F_{\psi\psi}^\psi \times (F_{\psi\psi}^\psi + 2F_{\psi\psi}^{\text{direct}} + 2F_{\psi\psi}^{\chi_c}), \quad F_{\psi\psi}^{\text{direct}} = (F_{\psi\psi}^{\text{direct}})^2
\]

- Under SPS CSM dominance,
 - \(F_{\psi\psi}^\psi \) is slightly enhanced by symmetry factors,
 - \(F_{\psi\psi}^{\chi_c} \), unlike single quarkonium production, is not enhanced and is found to be small
- Overall :

<table>
<thead>
<tr>
<th></th>
<th>(CSM) SPS</th>
<th>DPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{\psi\psi}^\psi)</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>(F_{\psi\psi}^{\chi_c})</td>
<td>small</td>
<td>50%</td>
</tr>
</tbody>
</table>
Harvesting new quarkonium data
Harvesting new quarkonium data

4 quarkonium extractions using theory ingredients!

- ATLAS (np J/ψ+Z, Lansberg-Shao)
- ATLAS (J/ψ+Z, Lansberg-Shao)
- CMS (J/ψ+J/ψ, Lansberg-Shao)
- D0 (J/ψ+Y, Shao-Zhang)
- D0 (J/ψ+J/ψ)
- ATLAS preliminary (J/ψ+J/ψ)
- CDF (4 jets)
- CDF (γ+3 jets)
- D0 (γ+3 jets)
- ATLAS (W+2 jets)
- CMS (W+2 jets)
Part VII

Conclusion
Conclusion

- New tool available to use your preferred nPDF set!
Conclusion

- New tool available to use your preferred nPDF set!
- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)
Conclusion

- New tool available to use your preferred nPDF set!
- For the first time, our study shows that **both DPSs and the NLO QCD corrections to SPSs are crucial** to account for the existing di-J/ψ data

 Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)

- Still for di-J/ψ, this provide evidence for
 1. the dominance of α_s^4 (LO) CS contributions for the **total cross section**,
 2. the dominance of α_s^5 (NLO) CS contributions at mid and large $P_{T\psi\psi}$,
 3. the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.
Conclusion

- New tool available to use your preferred nPDF set!
- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

 Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)

- Still for di-J/ψ, this provides evidence for
 1. the dominance of α_s^4 (LO) CS contributions for the total cross section,
 2. the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 3. the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.
New tool available to use your preferred nPDF set!

For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)

Still for di-J/ψ, this provide evidence for

(i) the dominance of α_s^4 (LO) CS contributions for the total cross section,
(ii) the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
(iii) the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

A small σ_{eff}, i.e. large DPS, is also required to describe $J/\psi + Z$, but also $\Upsilon + J/\psi$

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001
Conclusion

- New tool available to use your preferred nPDF set!
- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

 Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)

- Still for di-J/ψ, this provide evidence for
 (i) the dominance of α_s^4 (LO) CS contributions for the total cross section,
 (ii) the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 (iii) the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

- A small σ_{eff}, i.e. large DPS, is also required to describe $J/\psi + Z$, but also $\Upsilon + J/\psi$

 D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

- Lower limit on σ_{eff} from $Z + (b \rightarrow J/\psi)$

 JPL, H.S. Shao NPB 916 (2017) 132
Conclusion

- New tool available to use your preferred nPDF set!
- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

 Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)

- Still for di-J/ψ, this provide evidence for
 - (i) the dominance of α_s^4 (LO) CS contributions for the total cross section,
 - (ii) the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 - (iii) the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.
- A small σ_{eff}, i.e. large DPS, is also required to describe $J/\psi + Z$, but also $\Upsilon + J/\psi$

 D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

- Lower limit on σ_{eff} from $Z + (b \rightarrow J/\psi)$
- Hint at a flavour dependence of σ_{eff}
Conclusion

- New tool available to use your preferred nPDF set!
- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data.

 Confirmation by the recent ATLAS study using our predictions (see ATLAS, EPJC (2017) 77:76)

- Still for di-J/ψ, this provide evidence for

 (i) the dominance of α_s^4 (LO) CS contributions for the total cross section,

 (ii) the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,

 (iii) the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

- A small σ_{eff}, i.e. large DPS, is also required to describe $J/\psi + Z$, but also $\Upsilon + J/\psi$

 D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

- Lower limit on σ_{eff} from $Z + (b \rightarrow J/\psi)$

- Hint at a flavour dependence of σ_{eff}?

- As outlooks, TMD-oriented studies using associated quarkonium production should now become possible for $\Upsilon + \gamma$, later for $Q + \ell^+ \ell^-$

Part VIII

Back-up slides
CEM results for single J/ψ

Comparison between the ATLAS data (EPJC 76 (2016) 283) and the CEM results for $d\sigma/dy/dP_T$ of $J/\psi +$ a recoiling parton at (left) LO and (right) NLO at $\sqrt{s} = 8$ TeV. [The theoretical uncertainty band is from the scale variation.]
On the (non-)importance of CO channels for di-J/ψ
On the (non-)importance of CO channels for di-J/ψ

![Graph showing differential cross section $d\sigma/dP_T$ for di-J/ψ at 7 TeV LHC with CMS acceptance and SPS only. The graph includes contributions from LO CO+sm, LO NRQCD+sm, NLO* CS+LO CO, and LO CO+sm+NLO CS+LO CO. The results are compared with the Single J/ψ LDME fit by M. Butenschoen, B. Kniehl, arXiv:1105.0820, PRD 84 (2011) 051502.]

$P_T^{\psi\psi}$ (GeV)

$d\sigma/dP_T^{\psi\psi}$ (nb/GeV)

7 TeV @ LHC
CMS Accep.
SPS only
arXiv:1105.0820

On the (non-)importance of CO channels for di-\(J/\psi\)

- **Adding CO** using NLO LDMEs of the Hamburg group has **no impact**
On the (non-)importance of CO channels for di-J/ψ

Adding CO using NLO LDMEs of the Hamburg group has no impact
On the (non-)importance of CO channels for di-J/ψ

- Adding CO using NLO LDMEs of the Hamburg group has no impact
- Same with other NLO LDMEs, by the PKU group (incl. my co-author), by the IHEP group as well as by Bodwin et al.

On the (non-)importance of CO channels for di-J/ψ

Adding CO using NLO LDMEs of the Hamburg group has **no impact**

Same with other NLO LDMEs, by the PKU group (incl. my co-author), by the IHEP group as well as by Bodwin et al.

We disagree “that their inclusion nearly fills the large gap”

J.P. Lansberg (IPNO)
Quarkonia as a tool

April 5, 2017 25 / 22

Figure 1:
- **Left panel:** $d\sigma/dM_{\psi\psi}$ (nb/GeV) as a function of $M_{\psi\psi}$ (GeV) for LO CSM, NLO* CSM, and $\psi c\bar{c}\psi$ CSM.
- **Right panel:** $d\sigma/dM_{\psi\psi}$ (nb/GeV) as a function of $M_{\psi\psi}$ (GeV) with LO NRQCD, NLO* CS+LO CO.

Graphs:
- 7 TeV@LHC CMS Accep.

Table:
- Z. He, B. Kniehl PRL 115, 022002 (2015)
On the (non-)importance of CO channels for di-J/ψ

- **Adding CO** using NLO LDMEs of the Hamburg group has **no impact**
- Same with other NLO LDMEs, by the PKU group (incl. my co-author), by the IHEP group as well as by Bodwin et al.
- We disagree “that their inclusion nearly fills the large gap”
- In terms of $\chi^2_{d.o.f}$:

<table>
<thead>
<tr>
<th></th>
<th>LO CO+ NLO* CSM w/o DPS</th>
<th>NLO* CSM w DPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2_{d.o.f}$</td>
<td>3.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Single J/ψ LDME fit: M. Butenschoen, B. Kniehl arXiv:1105.0820, PRD 84 (2011) 051505

Z. He, B. Kniehl PRL 115, 022002 (2015)
Another way to see this with 2 CO channels

Using for the upper bound:

\[O_J \sim \hat{\psi}^{/one.fitted/zero.fitted} \hat{\psi}^{/three.fitted} (S_{/eight.fitted/one.fitted} \hat{\psi}^{/one.fitted/zero.fitted} \hat{\psi}^{/two.fitted}). \]

\[O_J \sim \hat{\psi}^{/three.fitted/zero.fitted} \hat{\psi}^{/one.fitted/zero.fitted} \hat{\psi}^{/two.fitted/zero.fitted} \hat{\psi}^{/one.fitted/zero.fitted} \hat{\psi}^{/two.fitted/zero.fitted} \hat{\psi}^{/two.fitted/zero.fitted}. \]
Using for the upper bound: \[\langle O^{J/\psi} (^3S^8_1) \rangle < 2.8 \times 10^{-3} \text{ GeV}^3 \] & \[\langle O^{J/\psi} (^1S^8_0) \rangle < 5.4 \times 10^{-2} \text{ GeV}^3 \]

[see the solid and dashed black lines]
Another way to see this with 2 CO channels

Using for the upper bound: \(\langle \mathcal{O}^{I/\psi}(3S_1^{[8]}) \rangle < 2.8 \times 10^{-3} \text{ GeV}^3 \) & \(\langle \mathcal{O}^{I/\psi}(1S_0^{[8]}) \rangle < 5.4 \times 10^{-2} \text{ GeV}^3 \)
[see the solid and dashed black lines]

Nota: \(\eta_c \) data : \(\langle I/\psi(1S_0^{[8]}) \rangle = \langle \eta_c(3S_1^{[8]}) \rangle < 1.46 \times 10^{-2} \text{ GeV}^3 \)

\[\text{JPL, H.-S. Shao PLB 751 (2015) 479} \]

\[\text{H. Han et al. PRL 114 (2015) 092005} \]
Another way to see this with 2 CO channels

- Using for the upper bound: \(\langle O^J/\psi (3 S_1^{[8]}) \rangle < 2.8 \times 10^{-3} \text{ GeV}^3 \) & \(\langle O^J/\psi (1 S_0^{[8]}) \rangle < 5.4 \times 10^{-2} \text{ GeV}^3 \)
 [see the solid and dashed black lines]

- Nota: \(\eta_c \) data: \(\langle J/\psi (1 S_0^{[8]}) \rangle = \langle \eta_c (3 S_1^{[8]}) \rangle < 1.46 \times 10^{-2} \text{ GeV}^3 \)

- Ignoring all previous constraints and fitting (one channel at a time) the LDME on the CMS data one gets irrealistically large values:
 \(\langle O^J/\psi (3 S_1^{[8]}) \rangle = 0.42 \pm 0.12 \text{ GeV}^3 \) & \(\langle O^J/\psi (1 S_0^{[8]}) \rangle = 0.91 \pm 0.22 \text{ GeV}^3 \) !!!

JPL, H.-S. Shao PLB 751 (2015) 479

H. Han et al. PRL 114 (2015) 092005