Wide-Angle Compton Scattering at JLab

DIS2017 (WG6 Spin and 3D Structure) University of Brimingham

David J. Hamilton

david.j.hamilton@glasgow.ac.uk

SUPA School of Physics and Astronomy University of Glasgow

April 5th 2017

Presentation Outline

- Theoretical Context and Motivation
 - Factorisation of the reaction mechanism
 - Non-perturbative transverse structure of the nucleon
- Experimental and analysis technique
- The Jefferson Lab WACS programme
 - 6 GeV Highlights
 - Plans for the 12 GeV era

WACS: An Introduction

- Hard exclusive nucleon Compton scattering can be investigated in two complementary kinematic regimes:
 - Deeply-virtual: large Q^2 ; $\left(\frac{-t}{Q^2}\right) \ll 1$
 - Wide-angle: large -t, -u; $\left(\frac{Q^2}{-t}\right) \ll 1$
- WACS is a powerful yet under-utilised probe of transverse nucleon structure, similar to high-Q² elastic electron nucleon scattering.

It is, however, one of the least understood of the fundamental reactions in the several GeV regime.

Reaction Mechanism

- A number of theoretical approaches have been proposed over the years:
 - pQCD (two hard gluon exchange)
 - Regge exchange and VMD models
 - GPD-based soft overlap mechanism
 - Relativistic constituent quark model
 - Soft collinear effective theory (SCET)
 - Dyson-Schwinger equations
- The two open questions are:
 - How does the reaction mechanism factorise?
 - What new insights on the non-perturbative structure of the proton are accessible?

Non-perturbative Proton Structure

Provided that $s, -t, -u \gg \Lambda^2$ the handbag mechanism (c.f. Feynman Mechanism, dynamic diquark in DSE) involves factorisation of the amplitudes into:

- Hard photon-parton scattering
- Soft emission and re-absorption of parton by proton

$$\mathcal{M}_{\mu'+,\mu+} = 2\pi \alpha_{\rm em} \Big\{ \frac{\mathcal{H}_{\mu'+,\mu+}[R_V + R_A] + \mathcal{H}_{\mu'-,\mu-}[R_V - R_A]}{\mathcal{M}_{\mu'-,\mu+}} \Big\} \\ \mathcal{M}_{\mu'-,\mu+} = 2\pi \alpha_{\rm em} \frac{\sqrt{-t}}{m} \Big\{ \frac{\mathcal{H}_{\mu'+,\mu+} + \mathcal{H}_{\mu'-,\mu-}}{m} \Big\} R_T$$

Non-perturbative physics encoded in vector, axial-vector and tensor form factors which can be related to 1/x moments of high momentum transfer, zero skewedness GPDs H, \tilde{H} and E.

WACS Form Factors

 $\gamma p \rightarrow \gamma p$ ep
ightarrow ep $R_V(t) = \sum_{\alpha} e_{\alpha}^2 \int_0^1 \frac{\mathrm{d}x}{x} H_V^q(x,0,t)$ $F_1(t) = \sum_{q} e_q \int_0^1 dx H_V^q(x, 0, t)$ $R_{A}(t) = \sum_{q} e_{q}^{2} \int_{0}^{1} \frac{\mathrm{d}x}{x} \tilde{H}_{v}^{q}(x,0,t)$ $G_A(t) = \sum_q e_q \int_0^1 \mathrm{d}x \, \tilde{H}_v^q(x,0,t)$ $R_T(t) = \sum_{\alpha} e_{\alpha}^2 \int_0^1 \frac{\mathrm{d}x}{x} E_v^q(x,0,t)$ $F_2(t) = \sum_{q} e_q \int_0^1 \mathrm{d}x \, E_v^q(x,0,t)$ $\frac{d\sigma}{dt} = \left(\frac{d\sigma}{dt}\right)_{VN} \left\{ \frac{1}{2} \frac{(s-u)^2}{s^2 + u^2} \left[R_V^2(t) + \frac{-t}{4m^2} R_T^2(t) \right] + \frac{1}{2} \frac{t^2}{s^2 + u^2} R_A^2(t) \right\}$ $A_{LL} = K_{LL} = \frac{R_A(t)}{R_V(t)} A_{LL}^{KN}$ $A_{LS} = -K_{LS} = A_{LL} \left[\frac{\sqrt{-t}}{2m} \frac{R_T(t)}{R_V(t)} - \beta \right]$

Form Factor Parameterisation

- *R_V(t)* and *R_T(t)* form factors parameterised from *H* and *E* GPDs extracted from flavour decomposed Dirac and Pauli form factors.
- This approach is not possible for the axial form factor R_A(t); instead a profile function for H
 was used based on Δq(x) data.
- This then allowed for predictions for the experimental observables $\frac{d\sigma}{dt}$, K_{LL} , and K_{LS} .

Experimental Technique

Cross sections are small which requires running at very high luminosity $(d\sigma/dt \le 1 \text{ pb GeV}^{-2}, \mathcal{L}_{eff} \ge 1 \times 10^{38} \text{ cm}^{-2} \text{ s}^{-1}).$ This places great demands on experimental equipment in terms of rates and radiation hardness.

- A 6 % copper radiator produces a mixed electron-photon beam on a liquid hydrogen target.
- Itigh-resolution magnetic spectrometer to detect the recoil proton.
- Highly-segmented electromagnetic calorimeter and deflection magnet to detect the scattered photon.

Analysis Technique

- Data analysis relies on utilisation of the kinematic two-body correlation between the scattered photon/electron and the recoil proton.
- The three dominant reaction channels within acceptance are:
 - $\gamma p \rightarrow \gamma p$
 - $\gamma p \rightarrow \pi^0 p$
 - ep
 ightarrow ep and $(ep\gamma)$
- Extraction of the WACS signal requires excellent angular and momentum resolution in both the photon and proton spectrometers.

The Jlab WACS Programme

- Two experiments during the 6 GeV era:
 - E99-114
 - E07-002

The Jlab WACS Programme

- Two experiments during the 6 GeV era:
 - E99-114
 - E07-002
- Two experiments approved for running at 12 GeV:
 - E12-14-003
 - E12-14-006
- Measurements of $d\sigma/dt$, K_{LL} , K_{LS} , A_{LL} and A_{LS} on the proton.

6 GeV Highlights - Differential Cross Section

- A factor of 1000 improvement over previous experiments.
- Disagreement with pQCD predictions cross section scales as $1/s^{7.5}$.

Extracted form factors exhibit strong evidence of *s*-independence and therefore factorisation provided that $s, -t, -u > 2.5 \text{ GeV}^2$.

6 GeV Highlights - Polarisation Observables

Results strongly favour leading quark mechanism (x = 1).
 K_{LL} = ^{R_A(t)}/_{R_V(t)} A^{KN}_{LL}

New result suggests axial nucleon current is larger that vector current at low -t, but factorisation and target masss corrections are still an issue.

Plans for 12 GeV – Apparatus

NPS

 Development at an advanced stage for a new highly-segmented PbWO₄ electromagnetic calorimeter for Hall C.

• Work underway on the concept for a high-intensity photon source for use with a solid polarised target for measurements of *A*_{LL}.

Plans for 12 GeV – Differential Cross Section

- New measurements (all firmly in the wide-angle regime) will allow for a rigorous test of factorisation and extraction of form factors.
- Extension to highest possible values of -t will offer new insights into non-perturbative proton structure and test universality of leading quark mechanism.

Plans for 12 GeV - nWACS?

- Can we measure the WACS cross section with a deuteron target?
- Would allow flavour separation of the form factors.

•
$$\sigma_n/\sigma_p \simeq (R_n/R_p)^2 \simeq (e_d/e_u)^2 \simeq 1/16$$

- Requires either a tagged photon beam or spectator nucleon tagging – limits luminosity.
- Angular resolution and nuclear corrections might be other concerns.

- The WACS programme is unique to Jefferson Lab and offers a relatively unexplored window on hadron structure at high -t.
- Results from the 6 GeV era demonstrate factorisation appears to be valid for Mandelstam variables above $2.5~{\rm GeV^2}$.
- New experiments are planned for the 12 GeV facility on both unpolarised and polarised observables:
 - These probably represent our last opportunity to study this reaction.
 - Experiments should therefore be carefully designed in light of what we've learned, in order to maximise physics impact.