

Nucleon spin COMPASS Gluon Sivers from high-p† hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary

The gluon Sivers asymmetry measurements at COMPASS

Adam Szabelski on behalf of the COMPASS collaboration

adam.szabelski@cern.ch

University of Trieste and INFN

Deep Inelastic Scattering 2017 Birmingham 5th of April 2017 Nucleon spin COMPASS Gluon Sivers from high-p† hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary

Nucleon spin

COMPASS

Gluon Sivers from high- p_T hadron pairs

Collins-like asymmetry

Gluon Sivers from J/Ψ

Summary

decomposition

Nucleon spin COMPASS Gluon Sivers from high- p_T hadron pairs Collins-like asymmetry Gluon Sivers from J/Ψ Summary

Nucleon spin decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

• $\Delta\Sigma \in [0.26; 036]$

COMPASS, PLB 753 (2016) 18; E. C. Aschenauer , R. Sassot, M. Stratmann Phys.Rev. D92 (2015)

• $\Delta g/g$ from COMPASS and ΔG from global fit including RHIC data are indecisive about the ΔG contribution

COMPASS, acc EPJC, hep-ex/1609.06062; COMPASS, PRD87 (2013) 052018; FSSV, PRL 1 113 012001 (2014)

- Nonzero Sivers effect has been measured in SIDIS for positive hadrons H. Avakian, A. Bressan, M. Contalbrigo, Eur.Phys.J. A52 (2016) no.6, 150
- QCD Lattice calculations and model-dependent data analysis show significant but opposite contribution of *L_u* and *L_d* LHPC DW, arXiv:1111.0718, (2011); C. Lefky, A. Prokudin, Phys.Rev. D91 (2015) no.3, 034010
- Nonzero Sivers function of gluon can be related to its orbital motion in a polarised nucleon

D. W. Sivers, PRD 41 (1990) 83; D. Boer, C. Lorc, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396

Adam Szabelski

experiment polarised target

Nucleon spin COMPASS Gluon Sivers from high-p7 hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary

COMPASS@CERN

experiment polarised target

Nucleon spin COMPASS Gluon Sivers from high-p_T hadron pairs Collins-like asymmetry Gluon Sivers from J/Ψ Summary

The COMPASS transversely polarised target

Nucleon spin COMPASS Gluon Sivers from high-p_T hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary 'Standard' Sivers Analysis method Data selection MC vs data Results

COMPASS OMPASS Univ. Trieste

Single hadron Sivers at COMPASS

- N_t expected number of events from the target configuration t
- α_t generalised acceptance
- f dilution factor
- P_T polarisation factor

3 processes in the single photon exchange approximation describe well the unpolarised data

With the use of neural network trained on MC simulation it is possible to $$\ensuremath{\mathsf{extract}}$$

the asymmetries of the three processes simultaneously.

Method presented in the $\Delta g/g$ extraction paper: COMPASS, acc EPJC, hep-ex/1609.06062

Nucleon spin COMPASS Gluon Sivers from high-p⊤ hadron pairs Collins-like asymmetry Gluon Sivers from J/Ψ Summary 'Standard' Sivers Analysis method Data selection MC vs data Results COMPASS OMPS Univ. Trieste

Tagging the gluons

 ϕ_P is the azimuthal angle of the sum of **two leading hadron momenta** as this angle should have the strongest correlation with the gluon azimuthal angle (ϕ_g)

Nucleon spin COMPASS Gluon Sivers from high-ρτ hadron pairs Collins-like asymmetry Gluon Sivers from J/Ψ Summary 'Standard' Sivers Analysis method Data selection MC vs data Results

COMPASS Univ. Trieste

3 (single photon exchange) processes

$$N_{t} = \alpha_{t} \left(1 + \beta_{t}^{G} A_{PGF}^{\sin\phi}(\vec{x}) + \beta_{t}^{L} A_{LP}^{\sin\phi}(\vec{x}) + \beta_{t}^{C} A_{QCDC}^{\sin\phi}(\vec{x}) \right)$$

$$\alpha_{t} \text{ - generalised acceptance of cell } t$$

$$\begin{array}{rcl} \beta^{G} &=& R_{PGF} f P_{T} \sin \phi, \\ \beta^{L} &=& R_{LP} f P_{T} \sin \phi, \\ \beta^{C} &=& R_{QCDC} f P_{T} \sin \phi. \end{array}$$

 $R_{PGF}, R_{LP}, R_{QCDC}$ - from neural network trained on MC data

t = ud, c, ud', c'.

Nucleon spin COMPASS Gluon Sivers from high-p7 hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary

'Standard' Sivers Analysis method Data selection MC vs data Results

Kinematic cuts

- DIS cuts: $Q^2 > 1 (\text{GeV}/c)^2$; 0.003 $< x_{Bj} < 0.7$; 0.1 < y < 0.9;
- $W > 5 \text{GeV} / c^2$;
- $z_1, z_2 > 0.1;$
- $z_1 + z_2 < 0.9;$
- p_{T1} > 0.7GeV/c; p_{T2} > 0.4GeV/c optimised to enhance PGF fraction and φ_g, φ_P correlation in MC.

Nucleon spin COMPASS Gluon Sivers from high-p_T hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary 'Standard' Sivers Analysis method Data selection MC vs data Results

MC used for NN training

Full chain MC with LEPTO generator, GEANT with COMPASS setup and reconstruction package

- MSTW08 PDFs
- Parton Shower on
- *F_L* on
- FLUKA for secondary interactions

6 kinematic variables as an input of NN: p_{T1} , p_{T2} , p_{L1} , p_{L2} , Q^2 , x_{Bj} good agreement between MC and data for distribution of these variables needed

Nucleon spin COMPASS Gluon Sivers from high-ρτ hadron pairs Collins-like asymmetry Gluon Sivers from J/Ψ Summary

'Standard' Sivers Analysis method Data selection MC vs data Results COMPASS Univ. Trieste

MC vs data. Proton

Adam Szabelski

DIS2017 5th April 2017

Gluon Sivers at COMPASS

Results

- Gluon Sivers contribution for proton: $A_{PGF,p}^{\sin(\phi_P-\phi_s)} = -0.26 \pm 0.09(stat.) \pm 0.06(syst.)$
- Gluon Sivers contribution for deuteron: $A_{PGF,d}^{\sin(\phi_P-\phi_s)} = -0.14 \pm 0.15(stat.) \pm 0.10(syst.)$
- Limited precision on deuteron. More data needed.
- The results for the LP compatible with single hadron measurements.
- COMPASS,sub PLB, hep-ex/1701.02453.

Adam Szabelski

DIS2017 5th April 2017

Results

- Gluon Collins-like contribution both for proton and deuteron is compatible with zero
- The results for LP is zero in qualitative agreement with SIDIS single hadron measurement
- COMPASS, sub PLB, hep-ex/1701.02453

tagging the gluon with . J/w signal Results
COMPASS
Univ. Trieste

Nucleon spin COMPASS Gluon Sivers from high-*p↑* hadron pairs Collins-like asymmetry Gluon Sivers from J/Ψ Summary

Sivers Asymmetry for J/Ψ

$$\mu^+ + N \rightarrow \mu^+ + J/\Psi + X \rightarrow 2\mu^+ + \mu^- + X$$

[Godbole, Misra, Mukherjee, and Rawoot, PRD 85 (2012)

Adam Szabelski

DIS2017 5th April 2017

- COMPASS 2010: Clear J/Ψ signal (3.1 GeV/ $c^2 \sigma = 55 \text{ MeV}/c^2$),
- small background, but limited statistics (2300 incl. and 4500 excl.)

Gluon Sivers from J/Psi results

The missing energy.

The Asymmetry. Black line denotes the integration region.

Results

- $A_p^{Siv} = -0.05 \pm 0.33$ (inclusive J/Ψ).
- $A_p^{Siv} = -0.28 \pm 0.18$ (Exclusive J/Ψ).
- Jan Matousek on behalf of COMPASS, JoP Conf. Series, http://iopscience.iop.org/1742-6596/678/1/012050.
- Prospect for better statistics: max. factor of 2.

Nucleon spin COMPASS Gluon Sivers from high-p7 hadron pairs Collins-like asymmetry Gluon Sivers from J/W Summary

Summary

- The results where obtained for scattering of muons off transversely polarised nucleon targets and selecting a high-p_T hadron pair sample with a complex method including MC simulation and Neural Networks.
- 2 The results of the gluon Sivers asymmetry for deuteron and proton are compatible within 1σ .
- **3** Combined deuteron and proton result is 2σ below zero.

4 The results from the J/Ψ analysis suffer from large statistical error.

For more details see hep-ex/1701.02453 and http://www.compass.cern.ch/compass/publications/theses/2016_phd_szabelski.pdf

Backup slides

Sivers Asymmetry for hadron pairs

Nonzero Sivers function of gluon can be related to its orbital motion in a polarised nucleon $\ell + N \rightarrow \ell' + 2h + X$

 $\begin{array}{c} \mathbf{P}_{P} = \mathbf{p}_{1} + \mathbf{p}_{2} \\ \mathbf{R} = \frac{1}{2}(\mathbf{p}_{1} - \mathbf{p}_{2}) \\ \phi_{P} \text{ for gluons correlated to } \phi_{g} \\ (\text{from MC}) \end{array}$

$$\phi = \phi_{2h} - \phi_S$$

 σ - two-hadron cross-section integrated over ϕ_R ; $A_T^P(\phi) = \frac{d\sigma^+(\phi) - d\sigma^+(\phi)}{d\sigma^+(\phi) + d\sigma^\downarrow(\phi)}$

$$N(\phi) = an\Phi\sigma_0(1 + P_T fA^{\sin(\phi)}\sin(\phi))$$

Phys.Rev.Lett.113, 062003 (2014); Phys. Rev. D 90, 074006 (2014); JHEP (2016), hep-ph/1605.07934

Adam Szabelski

DIS2017 5th April 2017

Gluon Sivers measurements

U. DAlesio, F. Murgia and C. Pisano JHEP 1509 (2015) 119

Gluon Sivers Method Validation

Neural network output

Gluon Sivers Method Validation

'Standard' Collins. proton

Gluon Sivers Method Validation COMPASS Univ. Trieste

MC vs data. Deuteron

Adam Szabelski

DIS2017 5th April 2017

Gluon Sivers at COMPASS

Gluon Sivers Method Validation COMPASS Univ. Trieste

backup Systematics Sivers mechanism

Weighting method. 3 processes

$$\begin{split} N_t &= \alpha_t^j \Big(1 + \beta_t^G A_{PGF}^{\sin\phi}(\vec{x}) + \beta_t^L A_{LP}^{\sin\phi}(\vec{x}) + \beta_t^C A_{QCDC}^{\sin\phi}(\vec{x}) \Big) \qquad t = ud, c, ud', c'. \\ p_t^j &:= \int \omega^j(\phi) N_t(\vec{x}) d\vec{x} \approx \sum_{i=1}^{N_t} \omega_i^j \\ &= \tilde{\alpha}_t^j \Big(1 + \{\beta_t^G\}_{\omega^j} A_{PGF}^{\sin\phi}(\langle x_g \rangle) + \{\beta_t^L\}_{\omega^j} A_{LP}^{\sin\phi}(\langle x_{Bj} \rangle) + \{\beta_t^C\}_{\omega^j} A_{QCDC}^{\sin\phi}(\langle x_C \rangle) \Big). \\ &\{\beta_t^G\}_{\omega^j} = \frac{\int \alpha_t \beta_t^G \omega^j d\vec{x}}{\int \alpha_t \omega d\vec{x}} \approx \frac{\sum_i^{N_t} \beta_i^G \omega_i^j}{\sum_i^{N_t} \omega_i^j} \end{split}$$

Here j = PGF, LP, QCDC and $\frac{\tilde{\alpha}_{ud}^{j}\tilde{\alpha}_{c}^{j}}{\tilde{\alpha}_{ud'}^{j}\tilde{\alpha}_{c}^{j}} = 1$ limits the number of unknowns to 12.

The set of equations is solved by minimising the χ^2

Adam Szabelski

DIS2017 5th April 2017

Gluon Sivers Method Validation COMPASS Univ. Trieste

Method Validation

Systematics Sivers mechanism Monte Carlo NN training validation COMPASS Univ. Trieste

Systematics summary.

	deuteron			proton		
source	value	assigned error	% $\sigma_{stat} (= 0.15)$	value	assigned error	$\sigma_{stat} (= 0.085)$
Monte Carlo	0.060	0.060	40%	0.054	0.054	64%
False asymmetries	0.016	0	0%	0.032	0	0%
selection of charges $q_1 \cdot q_2 = -1$	0.05	0	0%	0.038	0	0%
radiative corrections	0.018	0.018	12%	0.018	0.018	21%
large Q ²	-	-	-	0.014	0	0%
× _{Bj} binning	0.07	0.07	47%	0.011	0.011	13%
all asyms vs only Sivers	0.003	0.003	2%	0.005	0.005	6%
ML vs Weighted	0.008	0	0%	0.004	0	0%
target polarisation	0.0075	0.0075	5%	0.0043	0.0043	5%
dilution factor	0.0075	0.0075	5%	0.0043	0.0043	5%
total $\sqrt{\sum \sigma_i^2}$	-	0.10	63%	-	0.06	69%

Table : Systematics summary.

RMS : 0.040; min : -0.300; max : -0.193; (max-min)/2 = 0.054

Monte Carlo NN training validation COMPASS Univ. Trieste

NN training validation

Nucleon "tomography"

TMD: longitudinal momentum x and transverse momentum $\vec{k}_T(3D)$

alternatively: GPDs gives simultaneous distribution of quarks w.r.t.: longitudinal momentum xP and

transverse position \vec{b}_{\perp} - impact parameter (3D)

Nucleon "tomography" Chromodynamic lensing COMPASS

Univ. Trieste

Chromodynamic lensing

$$q_{\hat{x}}(x, \vec{b}_{\perp}) = \mathcal{H}(x, \vec{b}_{\perp}) - rac{1}{2M} rac{\partial}{\partial b_y} \mathcal{E}(x, \vec{b}_{\perp})$$

 $\label{eq:constraint} \begin{array}{l} \mathcal{H} \mbox{ - unpolarised GPD function (symmetric)} \\ \mathcal{E} \mbox{ - spin-flip function, when nonzero} \Rightarrow \mbox{ nonzero OAM} \\ \mbox{M. Burkardt, Int. J. Mod. Phys. A 18 (2003) 173; Nucl. Phys. A 735 (2004)} \end{array}$

Adam Szabelski

DIS2017 5th April 2017 V. D 69 (2 Glab) Siver at COMPASS