Top quark pair property measurements and $t\bar{t}+X$, using the ATLAS detector at the LHC

Nils-Arne Rosien
On behalf of the ATLAS collaboration
II. Physikalisches Institut

25th International Workshop on Deep Inelastic Scattering and Related Topics 2017, University of Birmingham 04.04.2017

Top quark properties at ATLAS

- \sim 40 millions of $t\bar{t}$ events produced at the ATLAS detector
- Era of precision measurements for top quark physics
- Measurements of top quark properties as tests of Standard Model
- Possibility of probing new observables and extending existing analysis approaches

Publications since last DIS

- 1) Measurements of **top quark spin observables** in *tt* events using **dilepton** final states in 8 TeV *pp* collisions with the ATLAS detector: [JHEP 03 (2017) 113]
- 2) Measurements of the **charge asymmetry** in top-quark pair production in the **dilepton** final state at 8 TeV with the ATLAS detector: [Phys. Rev. D 94, 032006]
- 3) Measurements of **charge and CP asymmetries in** *b***-hadron decays** using top-quark events collected by the ATLAS detector in *pp* collisions at 8 TeV: [JHEP02(2017)071]
- 4) Measurement of the **W boson polarisation** in *tt* events from pp collisions at 8 TeV in the **lepton+jets** channel with ATLAS: *submitted to EPJC* [arXiv:1612.02577]
- 5) Measurement of the *ttZ* and *ttW* production cross sections in multilepton final states using 3.2 fb⁻¹ of *pp* collisions at 13 TeV at the LHC: [Eur. Phys. J. C (2017) 77: 40.]

Top Quark Spin Observables (1)

- 8 TeV, 20.2 fb⁻¹, dilepton channel of $t\bar{t}$ decays
- Top quark spin is correlated, strength quantified by quantisation axis and production process
- Spin information is transferred to decay products
 - → use angular observables of decay products

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta_+^a \mathrm{d} \cos \theta_-^b} = \frac{1}{4} (1 + B_+^a \cos \theta_+^a + B_-^b \cos \theta_-^b - C(a, b) \cos \theta_+^a \cos \theta_-^b)$$

Nils-Arne Rosien

Top Quark Spin Observables (2)

- 2 different analyses:
 - parton level (full phase space)
 - stable particle level (fiducial space)
- *tt* reconstruction using neutrino weighting technique
- Fully Bayesian unfolding to deal with distortions due to cuts and detector resolution
- No significant deviation from SM
- Observation of C(n,n) with 5.1 σ

Nils-Arne Rosien

Charge Asymmetry in dilepton (1)

- 8 TeV, 20.3 fb⁻¹, dilepton channel of $t\bar{t}$ decays
- Asymmetries expected from valence quark sea antiquark fusion
 → antitop more central than top

Leptonic asymmetries:

$$A_{
m C}^{\ell\ell}=rac{N(\Delta|\eta|>0)-N(\Delta|\eta|<0)}{N(\Delta|\eta|>0)+N(\Delta|\eta|<0)}$$
 , $\Delta|\eta|=|\eta_{\ell^+}|-|\eta_{\ell^-}|$

tt asymmetries:

$$A_{
m C}^{tar t}=rac{N(\Delta|y|>0)-N(\Delta|y|<0)}{N(\Delta|y|>0)+N(\Delta|y|<0)}$$
 , $\Delta|y|=|y_t|-|y_{ar t}|$

3 different measurements of both observables:

- inclusive measurements on parton level in the full pase space
- inclusive measurements on particle level in the fiducial region
- differential measurements: inv. mass $(m_{t\bar{t}})$, $p_{T,t\bar{t}}$, and longitudinal boost $(\beta_{z,t\bar{t}})$ of $t\bar{t}$ system in the fiducial regions and the full phase space

Charge Asymmetry in dilepton (2)

함

ATLAS

- Kinematic reconstruction of $t\bar{t}$ system
- Fully Bayesean unfolding
- Result: $A_C^{\ell\ell} = 0.008 \pm 0.006$ $A_C^{t\bar{t}} = 0.021 \pm 0.016$
- SM prediction: $A_{\rm C}^{\ell\ell} = 0.0064 \pm 0.0003$ $A_C^{t\bar{t}} = 0.0111 \pm 0.0004$

ATLAS

Charge and CP asymmetries in b-decay (1)

- 8 TeV, \(\ell\)+jets, \(b\) decaying semileptonically to a soft muon
- 5 CP asymmetries, 2 charge asymmetries
- charge of lepton from W determines the charge of the produced b-quark
- charge of soft lepton determines the charge of b-quark at decay

$$A^{\text{ss}} = \frac{P(b \to \ell^+) - P(b \to \ell^-)}{P(b \to \ell^+) + P(\overline{b} \to \ell^-)}$$
$$A^{\text{os}} = \frac{P(b \to \ell^-) - P(\overline{b} \to \ell^+)}{P(b \to \ell^-) + P(\overline{b} \to \ell^+)}$$

CP asymmetries: $B_q - \overline{B}_q$ mixing

$$A^{\text{ss}} = \frac{P(b \to \ell^{+}) - P(\bar{b} \to \ell^{-})}{P(b \to \ell^{+}) + P(\bar{b} \to \ell^{-})} \begin{vmatrix} A^{b\ell}_{\text{mix}} = \frac{\Gamma(b \to \bar{b} \to \ell^{+}X) - \Gamma(\bar{b} \to b \to \ell^{-}X)}{\Gamma(b \to \bar{b} \to \ell^{+}X) + \Gamma(\bar{b} \to b \to \ell^{-}X)} \end{vmatrix} A^{b\ell}_{\text{dir}} = \frac{\Gamma(b \to \ell^{-}X) - \Gamma(\bar{b} \to \ell^{+}X)}{\Gamma(b \to \ell^{-}X) + \Gamma(\bar{b} \to \ell^{-}X)} A^{\text{os}} = \frac{P(b \to \ell^{-}) - P(\bar{b} \to \ell^{+})}{P(b \to \ell^{-}) + P(\bar{b} \to \ell^{+})} A^{bc}_{\text{mix}} = \frac{\Gamma(b \to \bar{b} \to \bar{c}X) - \Gamma(\bar{b} \to b \to cX)}{\Gamma(b \to \bar{b} \to \bar{c}X) + \Gamma(\bar{b} \to b \to cX)} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{+}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) - \Gamma(\bar{c} \to \ell^{+}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{-}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{-}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{-}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L}) + \Gamma(\bar{c} \to \ell^{-}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L})} A^{c\ell}_{\text{dir}} = \frac{\Gamma(\bar{c} \to \ell^{-}X_{L})}{\Gamma(\bar{c} \to \ell^{-}X_{L})} A^{c\ell}_{\text{dir}}$$

CP asymmetries: direct CP violation

$$A^{\text{ss}} = \frac{P\left(b \to \ell^{+}\right) - P\left(\overline{b} \to \ell^{-}\right)}{P\left(b \to \ell^{+}\right) + P\left(\overline{b} \to \ell^{-}\right)} \quad A^{b\ell}_{\text{mix}} = \frac{\Gamma\left(b \to \overline{b} \to \ell^{+}X\right) - \Gamma\left(\overline{b} \to b \to \ell^{-}X\right)}{\Gamma\left(b \to \overline{b} \to \ell^{+}X\right) + \Gamma\left(\overline{b} \to b \to \ell^{-}X\right)} \quad A^{b\ell}_{\text{dir}} = \frac{\Gamma\left(b \to \ell^{-}X\right) - \Gamma\left(\overline{b} \to \ell^{+}X\right)}{\Gamma\left(b \to \ell^{-}X\right) + \Gamma\left(\overline{b} \to \ell^{+}X\right)} \quad A^{bc}_{\text{dir}} = \frac{\Gamma\left(b \to cX_{L}\right) - \Gamma\left(\overline{b} \to \overline{c}X_{L}\right)}{\Gamma\left(b \to cX_{L}\right) + \Gamma\left(\overline{b} \to \overline{c}X_{L}\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}\right) - P\left(\overline{b} \to \ell^{+}\right)}{P\left(b \to \ell^{-}\right) - P\left(\overline{b} \to \ell^{+}\right)} \quad A^{bc}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - \Gamma\left(\overline{b} \to b \to cX\right)}{P\left(b \to \ell^{-}X\right) - P\left(\overline{b} \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}\right) - P\left(\overline{b} \to \ell^{+}X\right)}{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right) - P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{mix}} = \frac{P\left(b \to \ell^{-}X\right)}{P\left(b \to \ell^{-}X\right)} \quad A^{c\ell}_{\text{$$

Charge and CP asymmetries in b-decay (2)

- Soft muon heavy flavour tagging (SMT muons)
- Data is unfolded to well defined fiducial space
- CP result cannot disprove DØ deviation in dimuon asymmetry
 - → result both compatible with SM and DØ results

		Data	(10^{-2})	MC ((10^{-2})	Existing limits (2σ)	(10^{-2})	SM predic	ction (10^{-2})
	A^{ss}	-0.7	± 0.8	0.05	± 0.23	-		$< 10^{-2}$	[19]
	A^{os}	0.4	± 0.5	-0.03	$\pm \ 0.13$	_		$< 10^{-2}$	[19]
	$A_{ m mix}^b$	-2.5	± 2.8	0.2	± 0.7	< 0.1	[95]	$< 10^{-3}$	[96] [95]
	$A_{ m dir}^{b\ell}$	0.5	± 0.5	-0.03	$\pm \ 0.14$	< 1.2	[94]	$< 10^{-5}$	[19] [94]
	$A_{ m dir}^{c\ell}$	1.0	± 1.0	-0.06	$\pm \ 0.25$	< 6.0	[94]	$< 10^{-9}$	[19] [94]
	$A_{ m dir}^{bc}$	-1.0	± 1.1	0.07	± 0.29	-		$< 10^{-7}$	[97]

First direct measurements of direct CP violation in this context, improve existing limits of indirect measurements

W boson polarisation (1)

- 8 TeV, lepton+jets channel, 20.2 fb⁻¹
- Most precise W boson polarisation measurement to date
- Use orientation of analyser wrt. the b quark (inv. direction) in the W rest frame of top decay

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) F_0 + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 F_R$$

- Take both charged lepton or down-type quark from W decay as analyser
- 3 reweighted $t\bar{t}$ samples for F_L , F_R , F_0 + bkg. samples

W boson polarisation (2)

- KLFitter tt reconstruction [Nucl. Instrum. Meth. A 748 (2014) 18–25]
- Perform template fit
- Best fits (=smallest uncertainty):
 - two channel combination (ejets+mujets, ≥2b) for leptonic analyser
 - four channel combination (ejets+mujets, =1b and ≥2b) for hadronic analyser

Leptonic analyser (≥2 <i>b</i> -tags)	Hadronic analyser (1 b -tag + \geq 2 b -tags)				
$F_0 = 0.709 \pm 0.012$ (stat.+bkg. norm.) $^{+0.015}_{-0.014}$ (syst.)	$F_0 = 0.659 \pm 0.010$ (stat.+bkg. norm.) $^{+0.052}_{-0.054}$ (syst.)				
$F_{\rm L} = 0.299 \pm 0.008$ (stat.+bkg. norm.) $^{+0.013}_{-0.012}$ (syst.)	$F_{\rm L} = 0.281 \pm 0.021$ (stat.+bkg. norm.) $^{+0.063}_{-0.067}$ (syst.)				
$F_{\rm R} = -0.008 \pm 0.006$ (stat.+bkg. norm.) ± 0.012 (syst.	$F_{\rm R} = 0.061 \pm 0.022$ (stat.+bkg. norm.) $^{+0.101}_{-0.108}$ (syst.)				

W boson polarisation (3)

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\,\gamma^{\mu}\,(\underline{V_{L}}P_{L} + \underline{V_{R}}P_{R})\,t\,W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\,\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}}\,(\underline{g_{L}}P_{L} + \underline{g_{R}}P_{R})\,t\,W_{\mu}^{-} + \text{h.c.}$$

- F_L , F_R , F_0 can constrain anomalous *Wtb* couplings
- Anomalous couplings are constrained using EFTfitter [Eur. Phys. J. C (2016) 76: 432]

ttZ and ttW cross sections (1)

- Access to the the third component of the weak isospin of the top quark (FSR)
- Access to anomalous ttZ Couplings
- Learn about **electroweak symmetry breaking** via interactions of W and Z
- Indicator for strongly coupled Higgs sector, technicolour, heavy top partners
- Important background process for ttH (multilepton channel), SUSY (multilepton, stop pairs) and others
- Possibility to test PDFs via ttW because of ISR

ttZ and ttW cross sections (2)

- Separation into 3 different regions:
 - 2 same sign muons $(2\mu SS)$ \rightarrow sensitive to ttW, dominant bkg: fake leptons
 - $3\ell \rightarrow \text{sensitive to } ttW \text{ and } ttZ, \text{ dominant bkg: } WZ \text{ and fake leptons}$
 - $4\ell \rightarrow \text{sensitive to } t\bar{t}Z$, dominant bkg: ZZ and fake leptons
- 2μ SS and the 3ℓ channel: fakes are estimated using fully data driven matrix method
- 4ℓ channel: fake estimation using FF method using shapes from MC

ttZ and ttW cross sections (3)

- Statistically limited
- First observation ($>5\sigma$) of this process for ATLAS (parallel to CMS at 8 TeV)

1D fit result

$$\sigma_{t\bar{t}W} = 1.5 \pm 0.8 \text{ pb}$$
 $\sigma_{t\bar{t}Z} = 0.9 \pm 0.3 \text{ pb}$

NLO QCD

$$\sigma_{t\bar{t}W} = 0.60 \pm 0.08 \text{ pb}$$
 $\sigma_{t\bar{t}Z} = 0.84 \pm 0.09 \text{ pb}$

Conclusion

- Top quark properties measurements at ATLAS in spin observables, charge and CP asymmetries, W boson polarisation and $t\bar{t}V$ cross section
- Some spin observables measured for the first time
- $t\bar{t}V$ observed for the first time at 8 TeV (parallel to CMS)
- No disagreements with the SM
- More measurements using 13 TeV data are right around the corner

Thank you very much for your attention!