Constraining nuclear PDFs with CMS

Émilien Chapon on behalf of the CMS experiment

CERN

DIS 2017

25thInternational Workshop on Deep Inelastic Scattering and Related Topics

$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q^2)$$

Impact of nPDFs on LHC observables

- Important for most heavy-ion observables
- Up to 20 30 % modification compared to a free proton PDF

Impact of the LHC on nPDFs

- New range of (x, Q^2) accessible
- First nPDF to include LHC data: EPPS16

Pb
 Using pPb data rather than PbPb because:
 no "hot medium" (QGP) effects, no jet quenching (a priori)
 probing a single x_{Pb}
 NB: only 5 TeV (Run-I) pPb results for now

Process	Z	
	PLB 759 (2016) 36	
nPDF	q,	
x range	$10^{-3} - 10^{-1}$	
Q^2 range	M_Z^2	
	resolved final state	
Comments		
In EPPS16?	\checkmark	

р

Pb

Ŷ

Using pPb data rather than PbPb because:

- no "hot medium" (QGP) effects, no jet quenching (a priori)
- probing a single x_{Pb}

NB: only 5 TeV (Run-I) pPb results for now

Process	Z	w
	PLB 759 (2016) 36	PLB 750 (2015) 565
nPDF	q,	q,
x range	$10^{-3} - 10^{-1}$	$10^{-3} - 10^{-1}$
Q^2 range	M _Z ²	$M_{ m W}^2$
	resolved final state	10 imes larger yield than Z
Comments		"lsospin effect:" pp vs pn
In EPPS16?	 ✓ 	\checkmark

Pb

Ŷ

р

Using pPb data rather than PbPb because:

- no "hot medium" (QGP) effects, no jet quenching (a priori)
- probing a single x_{Pb}

NB: only 5 TeV (Run-I) pPb results for now

Process	Z	W	Dijet	
	PLB 759 (2016) 36	PLB 750 (2015) 565	CMS-PAS-HIN-16-003	
nPDF	q,	q,	g	
x range	$10^{-3} - 10^{-1}$	$10^{-3} - 10^{-1}$	$10^{-3} - 10^{-1}$	
Q^2 range	$M_{\rm Z}^2$	$M_{ m W}^2$	$10^3-10^4 \ {\rm GeV^{-2}}$	
	resolved final state	10 imes larger yield than Z		
Comments		"lsospin effect:" pp vs pn		
In EPPS16?	✓	\checkmark	\checkmark	CERN

р

Pb

Ŷ

Using pPb data rather than PbPb because:

- no "hot medium" (QGP) effects, no jet quenching (a priori)
- probing a single x_{Pb}

NB: only 5 TeV (Run-I) pPb results for now

Process	Z	W	Dijet	Quarkonia
	PLB 759 (2016) 36	PLB 750 (2015) 565	CMS-PAS-HIN-16-003	1702.01462, 1605.06966
nPDF	q,	q,	g	g
x range	$10^{-3} - 10^{-1}$	$10^{-3} - 10^{-1}$	$10^{-3} - 10^{-1}$	$10^{-4} - 10^{-2}$
Q^2 range	$M_{\rm Z}^2$	$M_{ m W}^2$	$10^3-10^4 \ {\rm GeV^{-2}}$	$10^2-10^3 \ {\rm GeV^{-2}}$
	resolved final state	10× larger yield than Z		pPb: possible other effects
Comments		"Isospin effect:" pp vs pn		Ultra-peripheral PbPb: how to use it for nPDF?
In EPPS16?	\checkmark	\checkmark	\checkmark	× CERBY

Z boson: event kinematics

- · Electron and muon channels
- $|\eta^{\ell}| < 2.4$, $p_T^{\ell} > 20 \, \mathrm{GeV}/c$ (fiducial region)

Z boson: fiducial cross section vs. rapidity

34.6 nb⁻¹ (pPb 5.02 TeV) dơ/dy_{cm} [nb] CMS 20 15 $pPb \rightarrow Z \rightarrow II$ $p_{-}^{l} > 20 \text{ GeV/c}, |\eta_{l-1}^{l}| < 2.4$ 10 - Data MCFM + CT10 MCFM + CT10 + EPS09 MCFM + CT10 + DSSZ Luminosity uncertainty: 3.5% Data / CT10 1.3 1.2 0.9 0.8 0.7 -2 _1 y_{cm} DSSZ: PRD 85 (2012) 074028

- Also available: acceptance-corrected results
- Comparison with MCFM with and without nPDFs (DSSZ, EPS09)

PLB 759 (2016) 36

Z boson: fiducial cross section vs. rapidity

- Also available: acceptance-corrected results
- Comparison with MCFM with and without nPDFs (DSSZ, EPS09)
- Nuclear effects most prominent in the forward and backward regions (different x regions)

PLB 759 (2016) 36

Z boson: foward-backward asymmetry

$$R_{FB} = \frac{\frac{d\sigma}{dy}(+y_{c.m.})}{\frac{d\sigma}{dy}(-y_{c.m.})}$$

- Improved sensitivity to nPDFs
- Hint of nuclear effects?

Z boson: foward-backward asymmetry

$$R_{FB} = \frac{\frac{d\sigma}{dy}(+y_{c.m.})}{\frac{d\sigma}{dy}(-y_{c.m.})}$$

- Improved sensitivity to nPDFs
- Hint of nuclear effects?

W boson: event kinematics

PLB 750 (2015) 565

- Electron and muon channels ($p_T > 25\,{
 m GeV}, \ |\eta^\ell| < 2.4)$

W boson: cross section

PLB 750 (2015) 565

• Poor discrimination between CT10 and CT10+EPS09: build asymmetries

W boson: charge asymmetry $(N^+ - N^-)/(N^+ + N^-)$

Comparing with different nPDFs

- Small deviation at large negative η : different u vs. d quark modification?
 - Not included in EPS09 / DSSZ / HKN
 - Allowed in nCTEQ15 (but wrong direction)
 - Allowed in EPPS16

W boson: charge asymmetry $(N^+ - N^-)/(N^+ + N^-)$

Similar results from ATLAS in pPb

Compatible with EPPS16 (larger uncertainties than EPS09)

See also comparison with PbPb and other systems in H. Paukkunen's talk.

W boson: forward-backward asymmetry $N^{\pm}(+\eta_{\text{lab}})/N^{\pm}(-\eta_{\text{lab}})$

- F/B asymmetries are more sensitive to nuclear modifications.
- Negative leptons favor EPS09
- Unclear conclusion for positive leptons

W boson: forward-backward asymmetry $N(+\eta_{lab})/N(-\eta_{lab})$

• Favoring the presence of nuclear modifications of PDFs

Dijets in pPb

Dijets in pPb: x_{Pb} vs η_{dijet}

CMS-PAS-HIN-16-003

Dijets in pPb: pPb-pp difference

- None of DSSZ, EPS09 or nCTEQ15 describe the data
- Significant constraints on EPPS16

Quarkonia

J/ψ production (NOT included in nPDF fits)

Summary

- nPDF are a crucial input to all heavy ion observables
- Probing uncharted (x, Q^2) territory at the LHC
- First constraints from Run-1 included in EPPS16
- \sim 10× more data from 2016 pPb \rightarrow better precision, new processes
 - top quark, Drell-Yan, W/Z+X, etc.

Electrons and muons in the CMS experiment

- Muon reconstruction: silicon tracker + muon sub-detectors
- Electron reconstruction: tracks associated with an ECAL cluster
- - using silicon tracks (PbPb) or particle flow (pPb)

Electrons and muons in the CMS experiment

- Muon reconstruction: silicon tracker + muon sub-detectors
- Electron reconstruction: tracks associated with an ECAL cluster
- - using silicon tracks (PbPb) or particle flow (pPb)

Additional material

Z in pPb: acceptance-corrected resutls

Z boson: fiducial cross section vs. p_T

.6 nb⁻¹ (pPb 5.02 TeV) d σ/dp_T [nb (GeV/c)⁻¹] CMS $pPb \rightarrow Z \rightarrow II$ $p_{_{\rm T}}^{_{\rm I}}$ > 20 GeV/c, $|\eta_{_{\rm lob}}^{_{\rm I}}|$ < 2.4 -- Data - POWHEG + PYTHIA 10-2 Luminosity uncertainty: 3.5% Ratio (1.4 1.2 nin. 1 0.8 10 p_{_} [GeV/c]

 Modification of the *p_T* spectrum from nPDF expected to be small

Z boson: fiducial cross section vs. p_T

- PLB 759 (2016) 36
- Modification of the *p_T* spectrum from nPDF expected to be small
- Deviations at low p_T consistent with 7 TeV and 8 TeV pp results

W production

Leading order

$$u\bar{d} \rightarrow W^+, \quad d\bar{u} \rightarrow W^-$$

W production

Leading order

$$u\bar{d}
ightarrow W^+, \quad d\bar{u}
ightarrow W^-$$

Yields

- Expect $2 \times$ more W^+ than W^- in pp.
- Expect more W^- than W^+ in PbPb.

Rapidity

- W boosted towards the valence quark.
- Spin conservation + parity violation: μ^+ (μ^-) boosted back to (away from) midrapidity.
 - \Rightarrow different rapidity distributions between μ^+ and μ^- .

W boson: cross section

PLB 750 (2015) 565

- · Good agreement between the electron and muon channels
- Combine the two channels for a better precision

Charge asymmetry in pp

