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Motivations

Our goal is to study QCD in the saturation regime
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The production of forward particles is a crucial tool to probe small x values

Saturation e�ects stronger in pA collisions (Q2
s ∼ A1/3)

Here we study the inclusive production of a forward hadron in proton-nucleus
collisions: pA→ hX
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Motivations

Typical calculation at LO:
(Lappi, Mäntysaari)
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BRAHMS y = 3.2 h− ×10
PHENIX 3 < y < 3.8 π0 ×1
STAR y = 3.3 π0 ×0.1
STAR y = 3.8 π0 ×0.05
STAR y = 4 π0 ×0.01

p + p→ π0/h− + X,
√
s = 200 GeV, K = 2.5

K factor needed to describe the data

First numerical calculation at NLO:
(Sta±to, Xiao, Zaslavsky)
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Negative cross section above some p⊥

Several proposals to solve the negativity problem at NLO, for example the kinematical
constraint / Io�e time cuto� (Altinoluk, Armesto, Beuf, Kovner, Lublinsky). Numerical
implementation: Watanabe, Xiao, Yuan, Zaslavsky. Can extend the positivity range but
doesn't solve the problem completely.

1309.6963 1307.4057

3 / 14



Formalism

Single inclusive forward hadron production at LO in the q → q channel:

P+

P−

xpP
+

xgP
−+k⊥

p⊥ = zk⊥, yPDF FF

UGD

Dilute projectile: xp =
k⊥√
s
ey, described by collinear PDFs

Dense target: xg =
k⊥√
s
e−y � 1, described by unintegrated gluon distribution F

F(k⊥) =

∫
d2bS(k⊥) , S(k⊥) =

∫
d2re−ik·rS(r) , S(r = x− y) =

〈
1

Nc

TrV (x)V †(y)

〉
Rapidity (or x) dependence of S : given by the Balitsky-Kovchegov equation
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Formalism

Expression for the NLO cross section: Chirilli, Xiao, Yuan ('CXY')

Example of real q → q contribution:
P+

P−

xpP
+

XP−+q⊥

p⊥ = zk⊥, y
kµq

kµg

Example of virtual q → q contribution:
P+

P−

xpP
+

XP−+k⊥

p⊥ = zk⊥, y
kµq

kµg

1− ξ =
k+g

xpP+ is the momentum fraction of the incoming quark carried by the gluon
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Divergences

After summing the real and virtual contributions, two types of divergences
remain in the NLO cross section:

The collinear divergence
- Occurs when the additional gluon is collinear to the incoming or outgoing quark
- A�ects only the NLO corrections proportional to CF

- Absorbed in the DGLAP evolution of the PDFs and FFs

The rapidity divergence
- Occurs when ξ → 1 ⇔ the rapidity of the unobserved gluon → −∞

⇔ this gluon is collinear to the target
- A�ects only the NLO corrections proportional to Nc

- Absorbed in the BK evolution of the target

P+

P−

xpP
+

XP−+q⊥

p⊥ = zk⊥, y
kµq

k+
g = (1− ξ)xpP+
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The 'CXY' cross section

Multiplicity after subtracting the divergences:
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Here and in the following:
√
s = 500 GeV

yh = 3.2

µF = k⊥

PDFs: MSTW2008 NLO

no FFs

The negativity at large k⊥ is apparently caused by the Nc-terms
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Origin of the negativity

The LO+Nc contributions can be written as

dNLO+Nc

d2kdy
= xpq(xp)

S(k⊥, xg)

(2π)2
+ αs

∫ 1

0

dξ

1− ξ [K(k⊥, ξ, xg)−K(k⊥, 1, xg)] ,

where

K(k⊥, ξ,X) =
Nc

(2π)2
(1 + ξ2)

[
θ(ξ − xp)

xp
ξ
q

(
xp
ξ

)
J (k⊥, ξ,X)− xpq (xp)Jv(k⊥, ξ,X)

]
,

and

J (k⊥, ξ,X) =

∫
d2q

(2π)2

2(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X)

−
∫

d2q

(2π)2

d2l

(2π)2

2(k− ξq) · (k− l)

(k− ξq)2(k− l)2
S(q⊥, X)S(l⊥, X) ,

Jv(k⊥, ξ,X) = S(k⊥, X)

[∫
d2q

(2π)2

2(ξk− q) · (k− q)

(ξk− q)2(k− q)2

−
∫

d2q

(2π)2

d2l

(2π)2

2(ξk− q) · (l− q)

(ξk− q)2(l− q)2
S(l⊥, X)

]
.

At large k⊥, the function K(k⊥, ξ,X) is positive and increasing with ξ,
therefore K(k⊥, ξ, xg)−K(k⊥, 1, xg) is negative and can be large enough to
make the cross section negative
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Fixed coupling

Iancu, Mueller, Triantafyllopoulos: consider the kinematics:

xpP
+

XP−+q⊥

kµq

k+
g = (1− ξ)xpP+

X =
k⊥√
s
e−y

(
1 +

ξ

1− ξ
(q⊥ − k⊥)2

k2
⊥

)
≈ xg

1− ξ ≡ X(ξ) at large k⊥

Thus the LO+Nc terms read

dNLO+Nc,sub

d2kdy
= xpq(xp)

S(k⊥, xg)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξ [K(k⊥, ξ,X(ξ))−K(k⊥, 1, X(ξ))] .

The limit ξ < 1− xg
x0

ensures that X(ξ) < x0, the initial condition for the BK
evolution of the target. Using the integral BK equation,

S(k⊥, xg) = S(k⊥, x0) + 2αsNc

∫ 1−xg/x0

0

dξ

1− ξ [J (k⊥, 1, X(ξ))− Jv(k⊥, 1, X(ξ))] ,

the LO+Nc terms can be rewritten as

dNLO+Nc,unsub

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξK(k⊥, ξ,X(ξ)) ,

which is explicitly positive at large k⊥.
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Fixed coupling

Results at �xed coupling αs = 0.2:
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The choice of the rapidity scale in the NLO terms, although subleading in
principle, is important at large k⊥

The 'subtracted' and 'unsubtracted' expressions give the same results

(Initial condition for the BK evolution at x0 = 0.01: MV model

S(r, x0) = exp

[
−

r2Q2
s,0

4
ln

(
1

|r|ΛQCD

+ e

)]
, Q2

s,0 = 0.2 GeV2 and ΛQCD = 0.241 GeV)
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Running coupling

The equivalence between the 'subtracted' and 'unsubtracted' formulations
holds only if one uses the same coupling αs when computing the cross section
and when solving the BK equation

In practice the BK equation is usually solved in coordinate space, with some
prescription for the running coupling

Fixed coupling BK equation:

∂S(r, X)

∂ lnX
= 2αsNc

∫
d2x

(2π)2

r2

x2(r− x)2

[
S(r, X)− S(x, X)S(r− x, X)

]
BK equation with Balitsky's prescription for the running coupling:

∂S(r, X)

∂ lnX
= 2αs(r

2)Nc

∫
d2x

(2π)2

[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]
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Running coupling

Running coupling: αs(r
2) =

4π

β0 ln

(
4C2

r2Λ2
QCD

) , αs(k2
⊥) =

4π

β0 ln

(
C2
momk

2
⊥

Λ2
QCD

)
Initial condition at x0 = 0.01: S(r, x0) = exp

[
−r2Q2

s,0

4
ln

(
1

|r|ΛQCD

+ ec · e
)]

,

with Q2
s,0 = 0.06 GeV2, C2 = 7.2 and ec = 18.9 obtained by a �t to HERA DIS

data (Lappi, Mäntysaari). C2
mom = 103 is �xed by comparing the LO limits of the

'subtracted' (αs → 0) and 'unsubtracted' (ξ → 1) expressions with αs → αs(k2
⊥):
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Running coupling

Results with running coupling:
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The 'subtracted' and 'unsubtracted' expressions are no longer equivalent

'Subtracted' expression: closer to the 'CXY' result at small k⊥, still leads to
negative results at large k⊥
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Conclusions

We have studied a recent proposal for the implementation of NLO factorization
in single inclusive forward hadron production

Change of the rapidity scale in the NLO terms: large e�ect numerically

Fixed coupling: positive cross sections at all transverse momenta

Running coupling: mismatch between the couplings used in coordinate and
momentum space

Directions for future work:

Better understanding of how to deal with the running of the coupling

Add the q → g, g → q and g → g channels + fragmentation functions

Use NLO BK for the evolution of the target

The initial condition for the BK evolution of the target must be obtained
by a �t (e.g. to HERA DIS data) also performed at NLO
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Coordinate space formulation

Recall that

dNLO+Nc

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξK
(
k⊥, ξ,

xg
1− ξ

)
,

with

K(k⊥, ξ,X) =
Nc

(2π)2
(1 + ξ2)

[
θ(ξ − xp)

xp
ξ
q

(
xp
ξ

)
J (k⊥, ξ,X)− xpq (xp)Jv(k⊥, ξ,X)

]
.

We can write J =
∫
d2re−ik·rJ̃ and Jv =

∫
d2re−ik·rJ̃v, with

J̃ (r, ξ,X)= 2

∫
d2x

(2π)2

x · (x− r)

x2(r− x)2

[
S(r− (1− ξ)x, X)− S(ξx, X)S(r− x, X)

]
,

J̃v(r, ξ,X)= 2

∫
d2x

(2π)2

1

x2

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
.

(and similarly for the CF terms)

In these notations the BK equation reads

∂S(r, X)

∂ lnX
= −2αsNc

[
J̃ (r, 1, X)− J̃v(r, 1, X)

]
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Coordinate space formulation

BK equation with Balitsky's prescription for the running coupling:

∂S(r, X)

∂ lnX
= 2αs(r

2)Nc

∫
d2x

(2π)2

[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]

This can be generalized to ξ 6= 1 by replacing J̃v with

J̃ rc
v (r, ξ,X) = 2

∫
d2x

(2π)2

1

x2

αs(x
2)

αs((r− ξx)2)

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
,

and by replacing the explicit αs factors by αs(r
2). Not a unique choice but:

ξ = 1: recovers Balitsky's prescription

Fixed coupling results unchanged
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Coordinate space formulation

Results with this formulation ('unsubtracted' version):
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Completely di�erent results compared to �xed or momentum space running
coupling: NLO result orders of magnitude larger than the LO one

The 'subtracted' expression gives the same results
(The Balitsky prescription is correctly recovered at ξ = 1)
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Coordinate space formulation

Results with momentum space running coupling ('unsubtracted' version):
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Coordinate space formulation

Results with �xed coupling:
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