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Observable

Consider proton-nucleus collisions

What is the probability P
n
 to observe n particles [=k times the mean multiplicity]

in the fragmentation region of the proton, in a particular event?



  

Outline

 Picture of particle production in pA collisions

 How a hadronic state dresses at high energies: the color dipole model

 Probability distribution of the particle multiplicity



  

Particle production in a dilute-dense collision

The proton is an initially dilute object, while the nucleus is an initially dense (non-fluctuating) 
object characterized by a saturation scale Q

A
 



  

Particle production in a dilute-dense collision

The proton is an initially dilute object, while the nucleus is an initially dense (non-fluctuating) 
object characterized by a saturation scale Q
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At the time of the interaction: The proton is in a given Fock state (different in each event, 
and whose probability depends on the rapidity), essentially made of gluons at large 
enough rapidity. 



  

Particle production in a dilute-dense collision

Final state: The gluons which have a 
transverse momentum less than Q

A
 are 

freed thanks to multiple scatterings with 
the nucleus and go the the final state (in 
the forward region of the proton), while 
the others essentially do not interact and 
just recombine.

At the time of the interaction: The proton is in a given Fock state (different in each event, 
and whose probability depends on the rapidity), essentially made of gluons at large 
enough rapidity. 

The proton is an initially dilute object, while the nucleus is an initially dense (non-fluctuating) 
object characterized by a saturation scale Q
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Particle production in a dilute-dense collision

Final state: The gluons which have a 
transverse momentum less than Q

A
 are 

freed thanks to multiple scatterings with 
the nucleus and go the the final state (in 
the forward region of the proton), while 
the others essentially do not interact and 
just recombine.

At the time of the interaction: The proton is in a given Fock state (different in each event, 
and whose probability depends on the rapidity), essentially made of gluons at large 
enough rapidity. 

The multiplicity measured in the proton fragmentation region in an event is the gluon 
number density at the scale Q

A
 in the corresponding realization of the QCD evolution.

The proton is an initially dilute object, while the nucleus is an initially dense (non-fluctuating) 
object characterized by a saturation scale Q

A
 



  

Particle production in a dilute-dense collision

We choose a frame in which the saturation scale of the nucleus is much larger than that of 
the proton, and look at central rapidity in that frame.

The multiplicity of produced particles 
at central rapidity is related to the 
gluon density in the proton by

dN
dy

(y≃0)=x G(x ,QA
2
(y0))

where x=e−(Y−y 0) QA (y0)
proton mass

Let's try and understand the event-by-event fluctuations of the gluon density!



  

Outline

 Picture of particle production in pA collisions

 How a hadronic state dresses at high energies: the color dipole model

 Probability distribution of the particle multiplicity



  

QCD calculation: the color dipole model

r0

t=−∞

t

Time at which the state interacts

To simplify, we consider a color neutral q-q pair (=onium) of given transverse size.



  

To simplify, we consider a color neutral q-q pair (=onium) of given transverse size.

Probability of observing a gluon fluctuation when one increases the rapidity from 0 to dy:

dP= +

2

r0
r1

r0−r 1

r1= position of the gluon with 
respect to the quark

t=−∞ Interaction time

QCD calculation: the color dipole model



  

dP= +

2

= dy
αs(Nc

2
−1)

πN c

r0
2

r1
2(r0−r 1)

2

d2 r1
2π

r0
r1

r0−r 1

r1=
t=−∞

QCD calculation: the color dipole model

To simplify, we consider a color neutral q-q pair (=onium) of given transverse size.

Probability of observing a gluon fluctuation when one increases the rapidity from 0 to dy:

Interaction time
position of the gluon with 

respect to the quark



  

dP= +

2

For finite rapidities, one needs to consider higher-orders:

r0
r1

r0−r 1

r1=

= dy
αs(Nc

2
−1)

πN c

r0
2

r1
2( r0−r 1)

2

d2 r1
2π

t=−∞

QCD calculation: the color dipole model

To simplify, we consider a color neutral q-q pair (=onium) of given transverse size.

Probability of observing a gluon fluctuation when one increases the rapidity from 0 to dy:

Interaction time
position of the gluon with 

respect to the quark



  

Trick: large number-of-color limit!

≃

dP=dy
αsNc

π
r 0
2

r 1
2
(r0−r1)

2

d2 r 1
2π

Gluon emission = color-dipole splitting, with probability

r0

r1

r0−r 1

QCD calculation: the color dipole model



  

Trick: large number-of-color limit!

≃

dP=dy
αsNc

π
r 0
2

r 1
2
(r0−r1)

2

d2 r 1
2π

Higher-order fluctuations are generated by a branching process:

Gluon emission = color-dipole splitting, with probability

≃

r0

r1

r0−r 1

Two successive dipole branchings

r0

r1

r0−r 1−r2

r2

QCD calculation: the color dipole model



  

Trick: large number-of-color limit!

≃

dP=dy
αsNc

π
r 0
2

r 1
2
(r0−r1)

2

d2 r 1
2π

Higher-order fluctuations are generated by a branching process:

Gluon emission = color-dipole splitting, with probability

≃

r0

r1

r0−r 1

Two successive dipole branchings

r0

r1

r0−r 1−r2

r2

xG(x ,k2) ∼

QCD calculation: the color dipole model

density of dipoles of size 1/k generated after rapidity evolution y=log(1/x)



  

initial dipole

r0

How the dipole model works

r0

y=0

(modulus of)
dipole size

n (r , y∣r 0)dP=dy
αsNc

π
r 0
2

r 1
2( r0−r1)

2

d2 r 1
2π



  

r0

r0

(modulus of)
dipole size

n (r , y∣r 0)

y>0

dP=dy
αsNc

π
r 0
2

r 1
2(r0−r1)

2

d2 r 1
2π

Singular when the gluon is close 
to the quark or to the antiquark

Collinear singularity

The small-dipole size region gets very easily 
populated

How the dipole model works

initial dipole



  

(modulus of)
dipole size

r0

y∼
1

αsN c/ π

r1

r0−r 1

r0r1 r0−r 1

n (r , y∣r 0)dP=dy
αsNc

π
r 0
2

r 1
2(r0−r1)

2

d2 r 1
2π

Dipoles of size of the order of the size of the 
initial dipole (are larger) need sone finite 

rapidity to get produced

How the dipole model works

set of fluctuations

Singular when the gluon is close 
to the quark or to the antiquark

Collinear singularity



  

(modulus of)
dipole size

r0

y≫
1

αsN c /π

r1

r0−r 1

r0r1 r0−r 1

log n ( r , y∣r 0)dP=dy
αsNc

π
r 0
2

r 1
2(r0−r1)

2

d2 r 1
2π

The total number of dipoles grows 
exponentially with rapidity through a 

branching process,

How the dipole model works

set of fluctuations

Singular when the gluon is close 
to the quark or to the antiquark

Collinear singularity



  

(modulus of)
dipole size

r0

y≫
1

αsN c /π

r1

r0−r 1

r0r1 r0−r 1

log n ( r , y∣r 0)dP=dy
αsNc

π
r 0
2

r 1
2(r0−r1)

2

d2 r 1
2π

n∼exp (2√αsNc
π y log

r 0
2

r 2 )

How the dipole model works

The total number of dipoles grows 
exponentially with rapidity through a 

branching process,

set of fluctuations

Singular when the gluon is close 
to the quark or to the antiquark

Collinear singularity
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 How a hadronic state dresses at high energies: the color dipole model
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dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

(modulus of)
dipole size

r0

log n ( r , y∣r 0)

1/QA



  

The gluons which go to the final state, i.e. 
which are freed in the scattering, correspond to 
dipoles which have a size larger than the 
inverse saturation momentum of the nucleus 
(assumed to be much smaller than r

0 
).

Gluons which go to the 
final state

dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

(modulus of)
dipole size

r0

log n ( r , y∣r 0)

1/QA



  

Gluons which go to the 
final state

dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

(modulus of)
dipole size

r0

log n ( r , y∣r 0)

∂Pn ( r0 , y )
∂ y

=
αsNc

π ∫ d2 r
2 π

r0
2

r 2( r0−r )
2 [∑m=1

n−1
Pm( r , y )Pn−m( r0−r , y )−Pn ( r0 , y )]

1/QA

The gluons which go to the final state, i.e. 
which are freed in the scattering, correspond to 
dipoles which have a size larger than the 
inverse saturation momentum of the nucleus 
(assumed to be much smaller than r

0 
).



  

Gluons which go to the 
final state

dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

(modulus of)
dipole size

r0

log n ( r , y∣r 0)

Pn∼exp (−
log 2n

4αsN c
π (Y−y0)

)Solution:
(n large)

1/QA

Salam (1996)

The gluons which go to the final state, i.e. 
which are freed in the scattering, correspond to 
dipoles which have a size larger than the 
inverse saturation momentum of the nucleus 
(assumed to be much smaller than r

0 
).
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π ∫ d2 r
2 π

r0
2
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Pm( r , y )Pn−m( r0−r , y )−Pn ( r0 , y )]



  

Gluons which go to the 
final state

dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

(modulus of)
dipole size

log n ( r , y∣r 0)

Pn∼exp (−
log 2n

4αsN c
π (Y−y0)

)Solution:
(n large)

But in pA, the “dipole” is a proton!

r0∼1/ΛQCD1/QA

Salam (1996)
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which are freed in the scattering, correspond to 
dipoles which have a size larger than the 
inverse saturation momentum of the nucleus 
(assumed to be much smaller than r
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).
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dN
dy

(y≃0)=x G(x ,QA
2
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−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

Pn∼exp (−
log 2n

4αsN c
π (Y−y0)

)Solution:
(n large)

Infrared cutoff
modeling confinement

1/QA (modulus of)
dipole size

log n ( r , y∣r 0)

r0∼1/ΛQCD

But in pA, the “dipole” is a proton!

Salam (1996)
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inverse saturation momentum of the nucleus 
(assumed to be much smaller than r
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dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
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Dipole-nucleus scattering: total multiplicity

Pn∼exp (−
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)Solution:
(n large)

Infrared cutoff
modeling confinement

1/QA (modulus of)
dipole size

log n ( r , y∣r 0)

r0∼1/ΛQCD

But in pA, the “dipole” is a proton!

Salam (1996)

(NB: arbitrary! so try different
possible implementations)

The gluons which go to the final state, i.e. 
which are freed in the scattering, correspond to 
dipoles which have a size larger than the 
inverse saturation momentum of the nucleus 
(assumed to be much smaller than r

0 
).
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π ∫
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2 π
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2
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dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Dipole-nucleus scattering: total multiplicity

Pn∼exp (−
log 2n

4αsN c
π (Y−y0)

)Solution:
(n large)

Infrared cutoff
modeling confinement

Pn∼
1
c n̄
exp (− n

c n̄ )

1/QA (modulus of)
dipole size

log n ( r , y∣r 0)

r0∼1/ΛQCD

so far, c undetermined in our calculation

But in pA, the “dipole” is a proton!

(NB: arbitrary! so try different
possible implementations)

The gluons which go to the final state, i.e. 
which are freed in the scattering, correspond to 
dipoles which have a size larger than the 
inverse saturation momentum of the nucleus 
(assumed to be much smaller than r
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Dipole-nucleus scattering: total multiplicity

n
∼
1
c n̄
exp (− n

c n̄ )

dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

∼ exp (−
log 2n

4αsN c
π (Y−y0)

)
Pn (log scale)

log n

(modulus of)
dipole size

Absorptive infrared boundary
modeling confinement

Realistic model for pA

r0∼1/ΛQCD

Perturbative calculationlog n

1/QA (modulus of)
dipole size

r0∼1/ΛQCD

1/QA



  

Dipole-nucleus scattering: total multiplicity

Work in progress: 
numerical simulations: c ~ 0.5 - 0.6 

c seems quite insensitive to the detailed 
implementation of confinement!

dN
dy

(y≃0)=x G(x ,QA
2
(y0)) where x=e

−(Y−y 0) QA(y0)
onium mass

Pn (log scale)

log n

(modulus of)
dipole size

Absorptive infrared boundary
modeling confinement

Realistic model for pA

r0∼1/ΛQCD

Perturbative calculationlog n

1/QA (modulus of)
dipole size

r0∼1/ΛQCD

1/QA

∼
1
c n̄
exp (− n

c n̄ )



  

Summary

At high energies, hadrons look like dense states of gluons (= “color glass 
condensates”), very far from the valence picture. This is a property of QCD.

Fluctuations of the multiplicity in pA scattering in the proton fragmentation 
region can be related to the event-by-event fluctuations of the total integrated 
gluon density in the proton. 
pA data at the LHC is a great opportunity to study these fluctuations!

The (stochastic) evolution of (ideal) onia wave functions towards high energy can be 
computed in QCD. The color dipole model is a convenient implementation of this 
evolution.



  

Summary

At high energies, hadrons look like dense states of gluons (= “color glass 
condensates”), very far from the valence picture. This is a property of QCD.

Fluctuations of the multiplicity in pA scattering in the proton fragmentation 
region can be related to the event-by-event fluctuations of the total integrated 
gluon density in the proton. 
pA data at the LHC is a great opportunity to study these fluctuations!

The (stochastic) evolution of (ideal) onia wave functions towards high energy can be 
computed in QCD. The color dipole model is a convenient implementation of this 
evolution.

Outlook
Better understand the fluctuations in the dipole model+confinement - test robustness of 
our solution (in progress)

Try and build a realistic model for phenomenology (proton instead of onium etc...)
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