Full NLO corrections for DIS structure functions in the dipole factorization formalism

Guillaume Beuf

ECT*, Trento

DIS 2017, Birmingham, 3-7 april

Outline

- Introduction: dipole factorization for DIS at low x_{Bj}
- One-loop correction to the $\gamma^*_{T,L}\to q\bar{q}$ light-front wave-functions: Direct calculation

G.B., PRD94 (2016)

• DIS at NLO in the dipole factorization

Example: F_L case

Cancellation of the UV divergences between the $q\bar{q}$ and $q\bar{q}g$ terms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G.B., in preparation

Introduction

At low x_{Bj} , many DIS observables can be expressed within dipole factorization, including gluon saturation \rightarrow rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS structure functions in the dipole factorization at LO+LL with rcBK Albacete *et al.*, PRD80 (2009); EPJC71 (2011) Kuokkanen *et al.*, NPA875 (2012); Lappi, Mäntysaari, PRD88 (2013)

 \Rightarrow The fitted dipole amplitude can then be used for pp, pA, AA, as well as other DIS observables.

Introduction

At low x_{Bj} , many DIS observables can be expressed within dipole factorization, including gluon saturation \rightarrow rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS structure functions in the dipole factorization at LO+LL with rcBK Albacete *et al.*, PRD80 (2009); EPJC71 (2011) Kuokkanen *et al.*, NPA875 (2012); Lappi, Mäntysaari, PRD88 (2013)

 \Rightarrow The fitted dipole amplitude can then be used for pp, pA, AA, as well as other DIS observables.

In the last 10 years, many theoretical (including numerical) progresses towards NLO/NLL accuracy for gluon saturation/CGC.

Obviously, DIS structure functions at NLO in the dipole factorization are required to push the fits beyond LO+LL accuracy.

2 independent calculations had been performed earlier for NLO corrections to photon impact factor and/or DIS cross-section:

- Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
 Using covariant perturbation theory. Results provided as
 - Current correlator in position space
 - Impact factor for k_{\perp} factorization \rightarrow Good for BFKL phenomenology

G.B., PRD85 (2012)

Using light-front perturbation theory. Results provided as

- DIS structure functions in dipole factorization
 - \rightarrow Good for gluon saturation phenomenology

2 independent calculations had been performed earlier for NLO corrections to photon impact factor and/or DIS cross-section:

- Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
 Using covariant perturbation theory. Results provided as
 - Current correlator in position space
 - Impact factor for k_{\perp} factorization \rightarrow Good for BFKL phenomenology
- G.B., PRD85 (2012)

Using light-front perturbation theory. Results provided as

- DIS structure functions in dipole factorization
 - \rightarrow Good for gluon saturation phenomenology

However, in both papers only the $q\bar{q}g$ contribution was calculated explicitly, whereas NLO corrections to the $q\bar{q}$ contribution were guessed. Methods used for that:

In Balitsky, Chirilli, PRD83 (2011):

Matching with earlier vacuum results ?

2 independent calculations had been performed earlier for NLO corrections to photon impact factor and/or DIS cross-section:

- Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
 Using covariant perturbation theory. Results provided as
 - Current correlator in position space
 - Impact factor for k_{\perp} factorization \rightarrow Good for BFKL phenomenology
- G.B., PRD85 (2012)

Using light-front perturbation theory. Results provided as

- DIS structure functions in dipole factorization
 - \rightarrow Good for gluon saturation phenomenology

However, in both papers only the $q\bar{q}g$ contribution was calculated explicitly, whereas NLO corrections to the $q\bar{q}$ contribution were guessed. Methods used for that:

```
In G.B., PRD85 (2012):
```

Unitary argument

2 independent calculations had been performed earlier for NLO corrections to photon impact factor and/or DIS cross-section:

- Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
 Using covariant perturbation theory. Results provided as
 - Current correlator in position space
 - Impact factor for k_{\perp} factorization \rightarrow Good for BFKL phenomenology
- G.B., PRD85 (2012)

Using light-front perturbation theory. Results provided as

- DIS structure functions in dipole factorization
 - \rightarrow Good for gluon saturation phenomenology

However, in both papers only the $q\bar{q}g$ contribution was calculated explicitly, whereas NLO corrections to the $q\bar{q}$ contribution were guessed. Methods used for that:

In G.B., PRD85 (2012):

Unitary argument \rightarrow wrong: missed photon finite WF renormalization \Rightarrow NLO $q\bar{q}$ terms needs to be calculated separately, $q\bar{q} \rightarrow q\bar{q} \rightarrow q\bar{q} \rightarrow q\bar{q}$

Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave background, in light-front perturbation theory:

$$\begin{split} \sigma_{\lambda}^{\gamma} &= 2N_{c} \underbrace{\sum_{q_{0}\bar{q}_{1}}\sum_{\text{F. states}} \frac{2\pi\delta(k_{0}^{+}+k_{1}^{+}-q^{+})}{2q^{+}} \left| \widetilde{\psi}_{\gamma_{\lambda} \to q_{0}\bar{q}_{1}} \right|^{2} \operatorname{Re}\left[1-\mathcal{S}_{01}\right] \\ &+ 2N_{c}C_{F} \underbrace{\sum_{q_{0}\bar{q}_{1}g_{2}}\sum_{\text{F. states}} \frac{2\pi\delta(k_{0}^{+}+k_{1}^{+}+k_{2}^{+}-q^{+})}{2q^{+}} \\ &\times \left| \widetilde{\psi}_{\gamma_{\lambda} \to q_{0}\bar{q}_{1}g_{2}} \right|^{2} \operatorname{Re}\left[1-\mathcal{S}_{012}^{(3)}\right] + \cdots \end{split}$$

 $\hat{\psi}_{\gamma_{\lambda} \to f}$: color-stripped light-front wavefunctions of the incoming photon for the Fock-state decomposition in mixed-space (k^+, \mathbf{x})

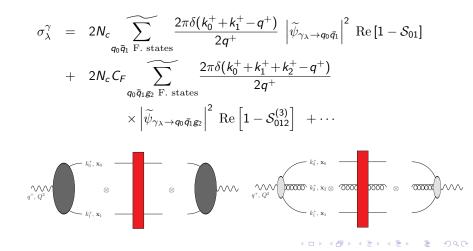
Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave background, in light-front perturbation theory:

$$\sigma_{\lambda}^{\gamma} = 2N_{c} \sum_{q_{0}\bar{q}_{1}} \sum_{\text{F. states}} \frac{2\pi\delta(k_{0}^{+}+k_{1}^{+}-q^{+})}{2q^{+}} \left| \tilde{\psi}_{\gamma_{\lambda} \to q_{0}\bar{q}_{1}} \right|^{2} \operatorname{Re}\left[1-S_{01}\right] \\ + 2N_{c}C_{F} \sum_{q_{0}\bar{q}_{1}g_{2}} \sum_{\text{F. states}} \frac{2\pi\delta(k_{0}^{+}+k_{1}^{+}+k_{2}^{+}-q^{+})}{2q^{+}} \\ \times \left| \tilde{\psi}_{\gamma_{\lambda} \to q_{0}\bar{q}_{1}g_{2}} \right|^{2} \operatorname{Re}\left[1-S_{012}^{(3)}\right] + \cdots$$
Dipole operator: $S_{01} \equiv \frac{1}{N_{c}}\operatorname{Tr}\left(U_{F}(\mathbf{x}_{0}) U_{F}^{\dagger}(\mathbf{x}_{1})\right)$
'Tripole'' operator: $S_{012}^{(3)} \equiv \frac{1}{N_{c}C_{F}}\operatorname{Tr}\left(t^{b}U_{F}(\mathbf{x}_{0}) t^{a}U_{F}^{\dagger}(\mathbf{x}_{1})\right) U_{A}(\mathbf{x}_{2})_{ba}$

Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave background, in light-front perturbation theory:



Calculation of the $\gamma_{T,L} \rightarrow q\bar{q}$ LF wave-functions at NLO

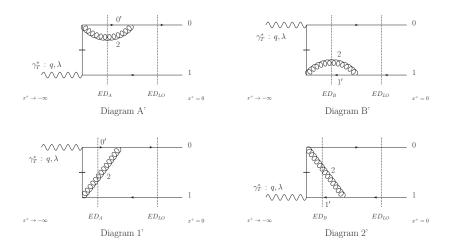
- Calculation done in Light-front perturbation theory for QCD+QED
- Cut-off k_{\min}^+ introduced to regulate the small k^+ divergences \Rightarrow associated with low-x leading logs to be resummed with BK/JIMWLK evolution at the end
- UV divergences from various tensor transverse integrals, but no UV renormalization at this order.

 \Rightarrow UV divergences (and finite regularization artifacts) have to cancel at cross-section level

 \Rightarrow Use (Conventional) Dimensional Regularization, and pay attention to rational terms in (D-4)/(D-4)

Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,L} \rightarrow q\bar{q}$ LF wave-functions

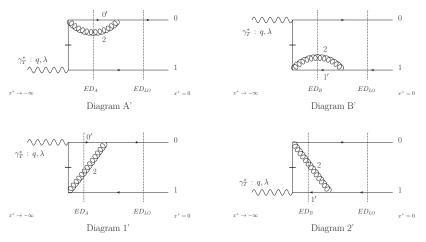
Diagrams for the $\gamma_T \rightarrow q\bar{q}$ LF wave-function only



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のくぐ

Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,L} \rightarrow q\bar{q}$ LF wave-functions

Diagrams for the $\gamma_T \rightarrow q\bar{q}$ LF wave-function only



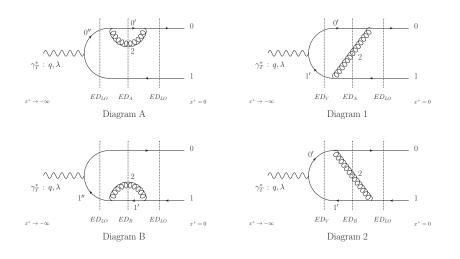
(日)、

э

All four vanish due to Lorentz symmetry!

Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,L} \rightarrow q\bar{q}$ LF wave-functions

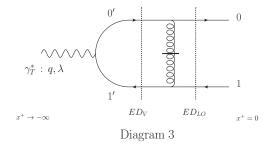
Diagrams for γ_T and γ_L LFWFs: 3 steps graphs



◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,I} \rightarrow q\bar{q}$ LF wave-functions

Diagrams for γ_T and γ_L LFWFs: 2 steps graph



- In the γ_T case: vanishes due to Lorentz symmetry
- In the γ_L case: non-zero, and cancels the unphysical power-like small k^+ divergence of the other vertex correction graphs.

Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,L} \rightarrow q\bar{q}$ LF wave-functions

Results for NLO $\gamma_{T,L} \rightarrow q\bar{q}$ LFWFs in momentum space

$$\psi_{\gamma_{T,L}^* \to q_0 \bar{q}_1} = \left[1 + \left(\frac{\alpha_s \, C_F}{2\pi} \right) \, \mathcal{V}^{T,L} \right] \, \psi_{\gamma_{T,L}^* \to q_0 \bar{q}_1}^{\text{tree}} \, + \mathcal{O}(e \, \alpha_s^2)$$

$$\mathcal{V}^{L} = 2 \left[\log \left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+}k_{1}^{+}}} \right) + \frac{3}{4} \right] \left[\Gamma \left(2 - \frac{D}{2} \right) \left(\frac{\overline{Q}^{2}}{4\pi \mu^{2}} \right)^{\frac{D}{2} - 2} - 2 \log \left(\frac{\mathbf{P}^{2} + \overline{Q}^{2}}{\overline{Q}^{2}} \right) \right] \\ + \frac{1}{2} \left[\log \left(\frac{k_{0}^{+}}{k_{1}^{+}} \right) \right]^{2} - \frac{\pi^{2}}{6} + 3 + O \left(D - 4 \right)$$

$$\mathcal{V}^{T} = \mathcal{V}^{L} + 2 \left[\log \left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+}k_{1}^{+}}} \right) + \frac{3}{4} \right] \left(\frac{\mathbf{P}^{2} + \overline{Q}^{2}}{\mathbf{P}^{2}} \right) \log \left(\frac{\mathbf{P}^{2} + \overline{Q}^{2}}{\overline{Q}^{2}} \right) + O\left(D - 4 \right)$$

Notations: $\overline{Q}^2 \equiv \frac{k_0^+ k_1^+}{(q^+)^2} Q^2$, and relative transverse momentum: $\mathbf{P} \equiv \mathbf{k}_0 - \frac{k_0^+}{q^+} \mathbf{q} = -\mathbf{k}_1 + \frac{k_1^+}{q^+} \mathbf{q}$ Remark: results consistent with the ones of Boussarie, Grabovsky, Szymanowski and Wallon, JHEP11(2016)149 Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,L} \rightarrow q\bar{q}$ LF wave-functions

Results for NLO $\gamma_{T,L} \rightarrow q\bar{q}$ LFWFs in mixed space

$$\widetilde{\psi}_{\gamma_{T,L}^* \to q_0 \bar{q}_1} = \left[1 + \left(\frac{\alpha_s C_F}{2\pi} \right) \widetilde{\mathcal{V}}^{T,L} \right] \widetilde{\psi}_{\gamma_{T,L}^* \to q_0 \bar{q}_1}^{\text{tree}} + \mathcal{O}(e \, \alpha_s^2)$$

$$\begin{split} \widetilde{\mathcal{V}}^{T} &= \widetilde{\mathcal{V}}^{L} + O\left(D - 4\right) \\ &= 2 \left[\log\left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+}k_{1}^{+}}}\right) + \frac{3}{4} \right] \left[\frac{1}{\left(2 - \frac{D}{2}\right)} - \Psi(1) + \log\left(\pi \, \mu^{2} \, \mathbf{x}_{01}^{2}\right) \right] \\ &+ \frac{1}{2} \left[\log\left(\frac{k_{0}^{+}}{k_{1}^{+}}\right) \right]^{2} - \frac{\pi^{2}}{6} + 3 + O\left(D - 4\right) \end{split}$$

- In mixed space: NLO corrections \Rightarrow rescaling of the LO $\gamma_{T,L} \rightarrow q\bar{q}$ LFWFs by a factor independent of the photon polarization and virtuality !
- Leftover logarithmic UV and low k^+ divergences to be dealt with at cross-section level.

Full NLO corrections for DIS structure functions in the dipole factorization formalism One-loop correction to the $\gamma_{T,I} \rightarrow q\bar{q}$ LF wave-functions

Results for NLO $\gamma_{T,L} \rightarrow q\bar{q}$ LFWFs in mixed space

$$\widetilde{\psi}_{\gamma_{T,L}^* \to q_0 \bar{q}_1} = \left[1 + \left(\frac{\alpha_s \, C_F}{2\pi} \right) \, \widetilde{\mathcal{V}}^{T,L} \right] \, \widetilde{\psi}_{\gamma_{T,L}^* \to q_0 \bar{q}_1}^{\text{tree}} \, + \mathcal{O}(e \, \alpha_s^2)$$

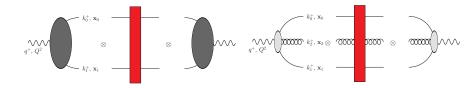
$$\begin{split} \widetilde{\mathcal{V}}^{\mathcal{T}} &= \widetilde{\mathcal{V}}^{L} + O\left(D\!-\!4\right) \\ &= 2 \left[\log\left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+}k_{1}^{+}}}\right) + \frac{3}{4} \right] \left[\frac{1}{\left(2-\frac{D}{2}\right)} - \Psi(1) + \log\left(\pi \,\mu^{2} \,\mathbf{x}_{01}^{2}\right) \right] \\ &+ \frac{1}{2} \left[\log\left(\frac{k_{0}^{+}}{k_{1}^{+}}\right) \right]^{2} - \frac{\pi^{2}}{6} + \frac{5}{2} + \frac{1}{2} + O\left(D\!-\!4\right) \end{split}$$

• In mixed space: NLO corrections \Rightarrow rescaling of the LO $\gamma_{T,L} \rightarrow q\bar{q}$ LFWFs by a factor independent of the photon polarization and virtuality !

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 (D-4)/(D-4) rational term 1/2: from γ^μ algebra in D dimensions ⇒ UV regularization scheme dependent!

From LFWFs to DIS cross-section



 $\widetilde{\psi}_{\gamma^{\tau}_{T,L}\to\bar{q}}^{\gamma^{\star}_{T,L}}$ now known at NLO accuracy in Dim Reg.

 \Rightarrow Need to be combined with the $q\bar{q}g$ contribution in the dipole factorization formula at NLO

 $\Rightarrow \widetilde{\psi}_{\gamma_{\tau,L}^*q\bar{q}g} \text{ is required also in Dim Reg, in order to cancel UV divergences as well as scheme dependent artifacts.}$

Only the case of σ_L^{γ} will be discussed in the following for simplicity. The case of σ_T^{γ} can be dealt with in the same way, but gives much longer expressions.

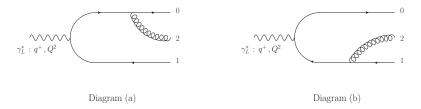
$qar{q}$ contribution to σ_L^γ at NLO in dim. reg.

$$\widetilde{\psi}_{\gamma_{L}^{+} \rightarrow q_{0} \overline{q}_{1}}^{\text{tree}} = -e \, e_{f} \, \mu^{2-\frac{D}{2}} \, (2\pi)^{1-\frac{D}{2}} \, 2Q \, \frac{k_{0}^{+} k_{1}^{+}}{(q^{+})^{2}} \left(\frac{\overline{Q}}{|\mathbf{x}_{01}|} \right)^{\frac{D}{2}-2} \, \mathbf{K}_{\frac{D}{2}-2} \left(|\mathbf{x}_{01}| \, \overline{Q} \right) \, \overline{u_{G}}(0) \, \gamma^{+} \mathbf{v}_{G}(1)$$

$$\sigma_{L}^{\gamma}\Big|_{q\bar{q}} = 2N_{c} \sum_{q_{0}\bar{q}_{1} \text{ F. states}} \frac{2\pi\delta(k_{0}^{+}+k_{1}^{+}-q^{+})}{2q^{+}} \left| \widetilde{\psi}_{\gamma_{L} \to q_{0}\bar{q}_{1}}^{\text{tree}} \right|^{2} \operatorname{Re}\left[1-S_{01}\right] \\ \times \left[1+\left(\frac{\alpha_{s} C_{F}}{2\pi}\right) \widetilde{\mathcal{V}}^{L}\right]^{2} + O(\alpha_{em} \alpha_{s}^{2})$$

Tree-level diagrams for $\gamma_L \rightarrow q\bar{q}g$ LFWFs

2 diagrams contribute to $\gamma_L \rightarrow q\bar{q}g$ (and 4 to $\gamma_T \rightarrow q\bar{q}g$):



 \rightarrow Standard calculation in momentum space using LFPT rules, but to be done in dimensional regularization

Then: Fourier transform to mixed space

$\gamma_L \rightarrow q \bar{q} g$ LFWF in mixed space

Result:

$$\begin{split} \widetilde{\psi}_{\gamma_{L}^{+} \to q_{0}\overline{q}_{1}g_{2}}^{\text{Tree}} &= e \, e_{f} \, g \, \varepsilon_{\lambda_{2}}^{j*} \, \frac{2Q}{(q^{+})^{2}} \\ \times \left\{ k_{1}^{+} \ \overline{u_{G}}(0)\gamma^{+} \Big[(2k_{0}^{+} + k_{2}^{+})\delta^{jm} + \frac{k_{2}^{+}}{2} \, [\gamma^{j}, \gamma^{m}] \Big] v_{G}(1) \ \mathcal{I}^{m} \Big(\mathbf{x}_{0+2;1}, \mathbf{x}_{20}; \overline{Q}_{(a)}^{2}, \mathcal{C}_{(a)} \Big) \\ - k_{0}^{+} \ \overline{u_{G}}(0)\gamma^{+} \Big[(2k_{1}^{+} + k_{2}^{+})\delta^{jm} - \frac{k_{2}^{+}}{2} \, [\gamma^{j}, \gamma^{m}] \Big] v_{G}(1) \ \mathcal{I}^{m} \Big(\mathbf{x}_{0;1+2}, \mathbf{x}_{21}; \overline{Q}_{(b)}^{2}, \mathcal{C}_{(b)} \Big) \right\} \end{split}$$

with the notations:

$$\begin{aligned} \overline{Q}_{(a)}^2 &= \frac{k_1^+(q^+-k_1^+)}{(q^+)^2} \ Q^2 \quad \text{and} \quad \overline{Q}_{(b)}^2 &= \frac{k_0^+(q^+-k_0^+)}{(q^+)^2} \ Q^2 \\ \mathcal{C}_{(a)} &= \frac{q^+k_0^+k_2^+}{k_1^+(k_0^++k_2^+)^2} \quad \text{and} \quad \mathcal{C}_{(b)} &= \frac{q^+k_1^+k_2^+}{k_0^+(k_1^++k_2^+)^2} \end{aligned}$$

And parent dipole vectors defined as:

$$\mathbf{x}_{n+m;p} = -\mathbf{x}_{p;n+m} \equiv \left(\frac{k_n^+ \mathbf{x}_n + k_m^+ \mathbf{x}_m}{k_n^+ + k_m^+}\right) - \mathbf{x}_p$$

$q\bar{q}g$ contribution to σ_I^{γ} at NLO in dim. reg.

$$\begin{split} \sigma_{L}^{\gamma}|_{q\bar{q}g} &= 2N_{c}C_{F}\sum_{q_{0}\bar{q}_{1}g_{2}} \underbrace{\sum_{\text{F. states}} \frac{2\pi\delta(k_{0}^{+}+k_{1}^{+}+k_{2}^{+}-q^{+})}{2q^{+}}}_{2q^{+}} \left| \widetilde{\psi}_{\gamma_{L} \rightarrow q_{0}\bar{q}_{1}g_{2}} \right|^{2} \operatorname{Re} \left[1 - \mathcal{S}_{012}^{(3)} \right] \\ &= 4N_{c} \,\alpha_{em} \sum_{f} e_{f}^{2} \int_{0}^{+\infty} dk_{0}^{+} \int_{0}^{+\infty} dk_{1}^{+} \int_{k_{\min}^{+}}^{+\infty} \frac{dk_{2}^{+}}{k_{2}^{+}} \,\delta(k_{0}^{+}+k_{1}^{+}+k_{2}^{+}-q^{+}) \\ &\times 2\alpha_{s}C_{F} \int \mathrm{d}^{D-2}\mathbf{x}_{0} \int \mathrm{d}^{D-2}\mathbf{x}_{1} \int \mathrm{d}^{D-2}\mathbf{x}_{2} \operatorname{Re} \left[1 - \mathcal{S}_{012}^{(3)} \right] \frac{4Q^{2}}{(q^{+})^{5}} \\ &\times \left\{ \left(k_{1}^{+}\right)^{2} \left[2k_{0}^{+}(k_{0}^{+}+k_{2}^{+}) + \frac{(D-2)}{2} \left(k_{2}^{+}\right)^{2} \right] \left| \mathcal{I}^{m}\left((a)\right) \right|^{2} \\ &+ \left(k_{0}^{+}\right)^{2} \left[2k_{1}^{+}(k_{1}^{+}+k_{2}^{+}) + \frac{(D-2)}{2} \left(k_{2}^{+}\right)^{2} \right] \left| \mathcal{I}^{m}\left((b)\right) \right|^{2} \\ &- k_{0}^{+}k_{1}^{+} \left[2\left(k_{0}^{+}+k_{2}^{+}\right)k_{1}^{+} + 2k_{0}^{+}\left(k_{1}^{+}+k_{2}^{+}\right) - \left(D-4\right)\left(k_{2}^{+}\right)^{2} \right] \\ &\times \operatorname{Re} \left(\mathcal{I}^{m}\left((a)\right)^{*} \mathcal{I}^{m}\left((b)\right) \right) \right\} + O(\alpha_{em} \alpha_{s}^{2}) \end{split}$$

UV divergences of the $q\bar{q}g$ contribution to σ_I^{γ}

- ロ ト - 4 回 ト - 4 □ - 4

UV divergences :

- At $\mathbf{x}_2
 ightarrow \mathbf{x}_0$ for $|(a)|^2$ contribution
- At $\mathbf{x}_2
 ightarrow \mathbf{x}_1$ for $|(b)|^2$ contribution

UV divergences of the $q\bar{q}g$ contribution to σ_L^γ

UV divergences :

- At $\mathbf{x}_2
 ightarrow \mathbf{x}_0$ for $|(a)|^2$ contribution
- At $\mathbf{x}_2
 ightarrow \mathbf{x}_1$ for $|(b)|^2$ contribution

Traditional method to deal with these UV divergences:

• Make the subtraction $\left[1 - S_{012}^{(3)}\right] \rightarrow \left[1 - S_{012}^{(3)}\right] - \left[1 - S_{01}\right]$ in $\sigma_L^{\gamma}|_{q\bar{q}g}$

• Add the corresponding term to $\sigma_L^{\gamma}|_{q\bar{q}}$ It works for the divergences, but it is far from optimal in the present case! \Rightarrow Let us present an improvement of that method.

Properties of the Fourier integral

$$\mathcal{I}^{m}(\mathbf{r},\mathbf{r}';\overline{Q}^{2},\mathcal{C}) \equiv (\mu^{2})^{2-\frac{D}{2}} \int \frac{d^{D-2}\mathbf{P}}{(2\pi)^{D-2}} \int \frac{d^{D-2}\mathbf{K}}{(2\pi)^{D-2}} \frac{\mathbf{K}^{m} e^{i\mathbf{K}\cdot\mathbf{r}'} e^{i\mathbf{P}\cdot\mathbf{r}}}{\left[\mathbf{P}^{2}+\overline{Q}^{2}\right]\left\{\mathbf{K}^{2}+\mathcal{C}\left[\mathbf{P}^{2}+\overline{Q}^{2}\right]\right\}}$$

Introducing Schwinger variables:

$$\mathcal{I}^{m}\left(\mathbf{r},\mathbf{r}';\overline{Q}^{2},\mathcal{C}\right) = \mathbf{r}'^{m} \left(\mathbf{r}'^{2}\right)^{1-\frac{D}{2}} \frac{i}{2} (2\pi)^{2-D} (\mu^{2})^{2-\frac{D}{2}} \\ \times \int_{0}^{+\infty} d\sigma \ \sigma^{1-\frac{D}{2}} \ e^{-\sigma\overline{Q}^{2}} \ e^{-\frac{r^{2}}{4\sigma}} \ \Gamma\left(\frac{D}{2}-1,\frac{r'^{2}\mathcal{C}}{4\sigma}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties of the Fourier integral

$$\mathcal{I}^{m}(\mathbf{r},\mathbf{r}';\overline{Q}^{2},\mathcal{C}) \equiv (\mu^{2})^{2-\frac{D}{2}} \int \frac{d^{D-2}\mathbf{P}}{(2\pi)^{D-2}} \int \frac{d^{D-2}\mathbf{K}}{(2\pi)^{D-2}} \frac{\mathbf{K}^{m} e^{i\mathbf{K}\cdot\mathbf{r}'} e^{i\mathbf{P}\cdot\mathbf{r}}}{\left[\mathbf{P}^{2}+\overline{Q}^{2}\right]\left\{\mathbf{K}^{2}+\mathcal{C}\left[\mathbf{P}^{2}+\overline{Q}^{2}\right]\right\}}$$

Introducing Schwinger variables:

$$\mathcal{I}^{m}\left(\mathbf{r},\mathbf{r}';\overline{Q}^{2},\mathcal{C}\right) = \mathbf{r}'^{m} \left(\mathbf{r}'^{2}\right)^{1-\frac{D}{2}} \frac{i}{2} (2\pi)^{2-D} \left(\mu^{2}\right)^{2-\frac{D}{2}} \\ \times \int_{0}^{+\infty} d\sigma \ \sigma^{1-\frac{D}{2}} \ e^{-\sigma\overline{Q}^{2}} \ e^{-\frac{r^{2}}{4\sigma}} \ \Gamma\left(\frac{D}{2}-1,\frac{r'^{2}\mathcal{C}}{4\sigma}\right)$$

For D = 4: $\mathcal{I}^{m}\left(\mathbf{r}, \mathbf{r}'; \overline{Q}^{2}, \mathcal{C}\right) = \frac{i}{(2\pi)^{2}} \left(\frac{\mathbf{r}'^{m}}{\mathbf{r}'^{2}}\right) \operatorname{K}_{0}\left(\overline{Q}\sqrt{\mathbf{r}^{2} + \mathcal{C}\mathbf{r}'^{2}}\right)$

Properties of the Fourier integral

$$\mathcal{I}^{m}(\mathbf{r},\mathbf{r}';\overline{Q}^{2},\mathcal{C}) \equiv (\mu^{2})^{2-\frac{D}{2}} \int \frac{d^{D-2}\mathbf{P}}{(2\pi)^{D-2}} \int \frac{d^{D-2}\mathbf{K}}{(2\pi)^{D-2}} \frac{\mathbf{K}^{m} e^{i\mathbf{K}\cdot\mathbf{r}'} e^{i\mathbf{P}\cdot\mathbf{r}}}{\left[\mathbf{P}^{2}+\overline{Q}^{2}\right]\left\{\mathbf{K}^{2}+\mathcal{C}\left[\mathbf{P}^{2}+\overline{Q}^{2}\right]\right\}}$$

Introducing Schwinger variables:

$$\mathcal{I}^{m}\left(\mathbf{r},\mathbf{r}';\overline{Q}^{2},\mathcal{C}\right) = \mathbf{r}'^{m} \left(\mathbf{r}'^{2}\right)^{1-\frac{D}{2}} \frac{i}{2} (2\pi)^{2-D} (\mu^{2})^{2-\frac{D}{2}} \\ \times \int_{0}^{+\infty} d\sigma \ \sigma^{1-\frac{D}{2}} \ e^{-\sigma\overline{Q}^{2}} \ e^{-\frac{r^{2}}{4\sigma}} \ \Gamma\left(\frac{D}{2}-1,\frac{\mathbf{r}'^{2}\mathcal{C}}{4\sigma}\right)$$

For
$$D = 4$$
:
 $\mathcal{I}^{m}(\mathbf{r}, \mathbf{r}'; \overline{Q}^{2}, \mathcal{C}) = \frac{i}{(2\pi)^{2}} \left(\frac{\mathbf{r}'^{m}}{\mathbf{r}'^{2}}\right) \operatorname{K}_{0}\left(\overline{Q}\sqrt{\mathbf{r}^{2} + \mathcal{C}\mathbf{r}'^{2}}\right)$

UV behavior: For
$$|\mathbf{r}'| \to 0$$
: $\mathcal{I}^m \left(\mathbf{r}, \mathbf{r}'; \overline{Q}^2, \mathcal{C}\right) \sim \mathcal{I}^m_{UV} \left(\mathbf{r}, \mathbf{r}'; \overline{Q}^2\right)$

$$\mathcal{I}_{UV}^{m}\left(\mathbf{r},\mathbf{r}';\overline{Q}^{2}\right) \equiv \mathbf{r'}^{m}\left(\mathbf{r'}^{2}\right)^{1-\frac{D}{2}} \frac{i}{(2\pi)^{2}} \Gamma\left(\frac{D}{2}-1\right) \left(\frac{2\overline{Q}}{(2\pi)^{2}\mu^{2}|\mathbf{r}|}\right)^{\frac{D}{2}-2} \mathrm{K}_{\frac{D}{2}-2}\left(\overline{Q}|\mathbf{r}|\right)$$

Building the UV subtraction terms

Next attempt to deal with the UV divergences : make the subtraction

$$\left\{ \left| \mathcal{I}^{m}\left(\left(a\right) \right) \right|^{2} \operatorname{Re} \left[1 - \mathcal{S}_{012}^{\left(3 \right)} \right] - \left| \mathcal{I}_{UV}^{m} \left(\mathbf{x}_{01}, \mathbf{x}_{20}; \overline{Q}_{\left(a \right)}^{2} \right) \right|^{2} \operatorname{Re} \left[1 - \mathcal{S}_{01} \right] \right\}$$

Cancels indeed the UV divergence at $\mathbf{x}_2 \rightarrow \mathbf{x}_0$, but produces an IR divergence at $|\mathbf{x}_{20}| \rightarrow +\infty$, absent in the original term!

(日) (日) (日) (日) (日) (日) (日) (日)

Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as

$$\begin{split} \left\{ \left| \mathcal{I}^{m}\left((\boldsymbol{a}\right)\right) \right|^{2} \operatorname{Re} \left[1 - \mathcal{S}_{012}^{(3)} \right] - \left[\left| \mathcal{I}_{UV}^{m} \left(\mathbf{x}_{01}, \mathbf{x}_{20}; \overline{Q}_{(\boldsymbol{a})}^{2} \right) \right|^{2} \right. \\ \left. - \operatorname{Re} \left(\mathcal{I}_{UV}^{m*} \left(\mathbf{x}_{01}, \mathbf{x}_{20}; \overline{Q}_{(\boldsymbol{a})}^{2} \right) \mathcal{I}_{UV}^{m} \left(\mathbf{x}_{01}, \mathbf{x}_{21}; \overline{Q}_{(\boldsymbol{a})}^{2} \right) \right) \right] \operatorname{Re} \left[1 - \mathcal{S}_{01} \right] \\ \left. \right\} \end{split}$$

- ロ ト - 4 回 ト - 4 □ - 4

This difference leads to a UV and IR finite integral in \mathbf{x}_2 .

Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as

$$\begin{cases} \left| \mathcal{I}^{m} \left((\boldsymbol{a}) \right) \right|^{2} \operatorname{Re} \left[1 - \mathcal{S}_{012}^{(3)} \right] - \left[\left| \mathcal{I}_{UV}^{m} \left(\mathbf{x}_{01}, \mathbf{x}_{20}; \overline{Q}_{(\boldsymbol{a})}^{2} \right) \right|^{2} \right. \\ \left. - \operatorname{Re} \left(\mathcal{I}_{UV}^{m*} \left(\mathbf{x}_{01}, \mathbf{x}_{20}; \overline{Q}_{(\boldsymbol{a})}^{2} \right) \mathcal{I}_{UV}^{m} \left(\mathbf{x}_{01}, \mathbf{x}_{21}; \overline{Q}_{(\boldsymbol{a})}^{2} \right) \right) \right] \operatorname{Re} \left[1 - \mathcal{S}_{01} \right] \end{cases}$$

This difference leads to a UV and IR finite integral in \mathbf{x}_2 . \Rightarrow The $D \rightarrow 4$ limit is now safe to take:

$$\rightarrow \left\{ \frac{1}{(2\pi)^4} \frac{1}{\mathbf{x}_{20}^2} \left[\mathrm{K}_0 \left(Q \, X_{012} \right) \right]^2 \, \mathrm{Re} \left[1 - \mathcal{S}_{012}^{(3)} \right] \right. \\ \left. - \frac{1}{(2\pi)^4} \left[\frac{\mathbf{x}_{20}}{\mathbf{x}_{20}^2} \cdot \left(\frac{\mathbf{x}_{20}}{\mathbf{x}_{20}^2} - \frac{\mathbf{x}_{21}}{\mathbf{x}_{21}^2} \right) \right] \left[\mathrm{K}_0 \left(\overline{Q}_{(a)}^2 \left| \mathbf{x}_{01} \right| \right) \right]^2 \mathrm{Re} \left[1 - \mathcal{S}_{01} \right] \right\}$$

 $Q^2 X_{012}^2 \equiv \frac{Q^2}{(q^+)^2} \left[k_0^+ k_1^+ x_{01}^2 + k_0^+ k_2^+ x_{02}^2 + k_1^+ k_2^+ x_{12}^2 \right] = \frac{q \bar{q} g \text{ form. time}}{\gamma^* \text{ life time}}$

Subtracting both UV divergences this way:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Subtracting both UV divergences this way:

$$\begin{split} &\sigma_{L}^{\gamma}|_{q\bar{q}g} - \sigma_{L}^{\gamma}|_{UV,|(a)|^{2}} - \sigma_{L}^{\gamma}|_{UV,|(b)|^{2}} \\ &= 4N_{c} \,\alpha_{em} \sum_{f} e_{f}^{2} \int \frac{\mathrm{d}^{2}\mathbf{x}_{0}}{2\pi} \int \frac{\mathrm{d}^{2}\mathbf{x}_{1}}{2\pi} \int_{0}^{+\infty} dk_{0}^{+} \int_{0}^{+\infty} dk_{1}^{+} \frac{4Q^{2}}{(q^{+})^{5}} \,\frac{\alpha_{s}C_{F}}{\pi} \\ &\times \int_{k_{\min}^{+}}^{+\infty} \frac{dk_{2}^{+}}{k_{2}^{+}} \,\delta(k_{0}^{+} + k_{1}^{+} + k_{2}^{+} - q^{+}) \int \frac{\mathrm{d}^{2}\mathbf{x}_{2}}{2\pi} \left[q \,\operatorname{term} + \bar{q} \,\operatorname{term} + \operatorname{leftover} \right] \end{split}$$

With:

$$q \text{ term} = (k_1^+)^2 \left[2k_0^+ (k_0^+ + k_2^+) + (k_2^+)^2 \right] \left[\frac{\mathbf{x}_{20}}{x_{20}^2} \cdot \left(\frac{\mathbf{x}_{20}}{x_{20}^2} - \frac{\mathbf{x}_{21}}{x_{21}^2} \right) \right] \\ \times \left\{ \left[\text{K}_0(QX_{012}) \right]^2 \text{Re} \left[1 - S_{012} \right] - \left(\mathbf{x}_2 \to \mathbf{x}_0 \right) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Subtracting both UV divergences this way:

With:

$$\begin{split} \bar{q} \ \text{term} &= (k_0^+)^2 \left[2k_1^+ (k_1^+ + k_2^+) + (k_2^+)^2 \right] \ \left[\frac{\mathbf{x}_{21}}{x_{21}^2} \cdot \left(\frac{\mathbf{x}_{21}}{x_{21}^2} - \frac{\mathbf{x}_{20}}{x_{20}^2} \right) \right] \\ &\times \left\{ \left[\text{K}_0(QX_{012}) \right]^2 \text{Re} \Big[1 - \mathcal{S}_{012} \Big] - \left(\mathbf{x}_2 \to \mathbf{x}_1 \right) \right\} \end{split}$$

・ロト・日本・モート モー うへぐ

Subtracting both UV divergences this way:

With:

leftover =
$$(k_2^+)^2 \left[(k_0^+)^2 + (k_1^+)^2 \right] \left(\frac{\mathbf{x}_{20}}{\mathbf{x}_{20}^2} \cdot \frac{\mathbf{x}_{21}}{\mathbf{x}_{21}^2} \right) \left[\mathrm{K}_0(QX_{012}) \right]^2 \mathrm{Re} \left[1 - \mathcal{S}_{012} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In dim. reg., the UV subtraction terms can be written as

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In dim. reg., the UV subtraction terms can be written as

With:

$$\widetilde{\mathcal{V}}_{UV,|(\mathbf{a})|^{2}}^{L} = \Gamma\left(\frac{D}{2} - 2\right) \left(\pi\mu^{2}\mathbf{x}_{01}^{2}\right)^{2-\frac{D}{2}} \left[\log\left(\frac{k_{\min}^{+}}{k_{0}^{+}}\right) + \frac{3}{4} - \frac{(D-4)}{8}\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In dim. reg., the UV subtraction terms can be written as

With:

$$\widetilde{\mathcal{V}}_{UV,|(b)|^{2}}^{L} = \Gamma\left(\frac{D}{2} - 2\right) \left(\pi\mu^{2}\mathbf{x}_{01}^{2}\right)^{2-\frac{D}{2}} \left[\log\left(\frac{k_{\min}^{+}}{k_{1}^{+}}\right) + \frac{3}{4} - \frac{(D-4)}{8}\right]$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Expanding around D = 4:

$$\begin{split} \widetilde{\mathcal{V}}_{UV,|(a)|^{2}}^{L} &+ \widetilde{\mathcal{V}}_{UV,|(b)|^{2}}^{L} &= -2\left[\frac{1}{(2-\frac{D}{2})} - \Psi(1) + \log\left(\pi \, \mathbf{x}_{01}^{2} \, \mu^{2}\right)\right] \\ &\times \left[\log\left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+}k_{1}^{+}}}\right) + \frac{3}{4}\right] - \frac{1}{2} + O(D-4) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expanding around D = 4:

$$\begin{split} \widetilde{\mathcal{V}}_{UV,|(a)|^{2}}^{L} &+ \widetilde{\mathcal{V}}_{UV,|(b)|^{2}}^{L} &= -2\left[\frac{1}{(2-\frac{D}{2})} - \Psi(1) + \log\left(\pi \, \mathbf{x}_{01}^{2} \, \mu^{2}\right)\right] \\ &\times \left[\log\left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+}k_{1}^{+}}}\right) + \frac{3}{4}\right] - \frac{1}{2} + O(D-4) \end{split}$$

But in the $q\bar{q}$ contribution to σ_L^{γ} :

$$\begin{split} \widetilde{\mathcal{V}}^{L} &= 2\left[\frac{1}{(2-\frac{D}{2})} - \Psi(1) + \log\left(\pi \, \mathbf{x}_{01}^{2} \, \mu^{2}\right)\right] \left[\log\left(\frac{k_{\min}^{+}}{\sqrt{k_{0}^{+} k_{1}^{+}}}\right) + \frac{3}{4}\right] \\ &+ \frac{1}{2} \left[\log\left(\frac{k_{0}^{+}}{k_{1}^{+}}\right)\right]^{2} - \frac{\pi^{2}}{6} + \frac{5}{2} + \frac{1}{2} + O(D-4) \end{split}$$

 \Rightarrow Cancelation of:

- the UV divergence
- the k_{\min}^+ dependence
- the ±1/2 rational term : strong hint of UV regularization scheme independence

Final result for the dipole-like terms:

With:

$$\begin{split} \widetilde{\mathcal{V}}_{\text{reg.}}^{L} &\equiv \quad \widetilde{\mathcal{V}}^{L} + \widetilde{\mathcal{V}}_{UV,|(a)|^{2}}^{L} + \widetilde{\mathcal{V}}_{UV,|(b)|^{2}}^{L} \\ &= \quad \frac{1}{2} \left[\log \left(\frac{k_{0}^{+}}{k_{1}^{+}} \right) \right]^{2} - \frac{\pi^{2}}{6} + \frac{5}{2} \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�??

Final step: BK/JIMWLK resummation

- **9** Assign k_{\min}^+ to the scale set by the target: $k_{\min}^+ = \frac{Q_0^2}{2x_0 P^-} = \frac{x_{BJ}Q_0^2}{x_0 Q^2} q^+$
- **3** Choose a factorization scale $k_f^+ \lesssim k_0^+, k_1^+$, corresponding to a range for the high-energy evolution $Y_f^+ \equiv \log\left(\frac{k_f^+}{k_{\min}^+}\right) = \log\left(\frac{x_0 Q^2 k_f^+}{x_{B_f} Q_0^2 q^+}\right)$
- In the LO term in the observable, make the replacement

$$\langle \mathcal{S}_{01} \rangle_0 = \langle \mathcal{S}_{01} \rangle_{Y_f^+} - \int_0^{Y_f^+} dY^+ \left(\partial_{Y^+} \langle \mathcal{S}_{01} \rangle_{Y^+} \right)$$

with both terms calculated with the same evolution equation

- Combine the second term with the NLO correction to cancel its k⁺_{min} dependence and the associated large logs.
- \Rightarrow Works straightforwardly in the case of
 - the naive LL BK equation
 - the kinematically improved BK equation as implemented in G.B., PRD89 (2014)

Should also work with the other implementation (lancu *et al.*, PLB744 (2015)), but might require a bit more work.

Conclusion

- Direct calculation of $\gamma_{T,L} \rightarrow q\bar{q}$ LFWFs at one-gluon-loop order, both in momentum and in mixed space
- Full NLO corrections to F_L and F_T from the combination of the qq̄ and qq̄g contributions, with improved method to cancel UV divergences

Phenomenology outlook : All ingredients soon available for fits to HERA data at NLO+LL accuracy, and hopefully NLO+NLL accuracy, in the dipole factorization, including gluon saturation.

- Theory outlook : Application of the NLO $\gamma_{T,L} \rightarrow q\bar{q}(g)$ LFWFs to calculate other DIS observables at NLO?
 - Extension to the case of massive quarks?
 - Comparison to other calculations of photon impact factor at NLO ?
 Bartels et al.(2001-2004); Balitsky, Chirilli (2011-2013)