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Introduction

At low xBj , many DIS observables can be expressed within dipole
factorization, including gluon saturation → rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS
structure functions in the dipole factorization at LO+LL with rcBK
Albacete et al., PRD80 (2009); EPJC71 (2011)
Kuokkanen et al., NPA875 (2012);

Lappi, Mäntysaari, PRD88 (2013)

⇒ The fitted dipole amplitude can then be used for pp, pA, AA, as well
as other DIS observables.

In the last 10 years, many theoretical (including numerical) progresses
towards NLO/NLL accuracy for gluon saturation/CGC.

Obviously, DIS structure functions at NLO in the dipole factorization are
required to push the fits beyond LO+LL accuracy.
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DIS at NLO: previous results

2 independent calculations had been performed earlier for NLO
corrections to photon impact factor and/or DIS cross-section:

1 Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
Using covariant perturbation theory. Results provided as

Current correlator in position space
Impact factor for k⊥ factorization → Good for BFKL phenomenology

2 G.B., PRD85 (2012)
Using light-front perturbation theory. Results provided as

DIS structure functions in dipole factorization
→ Good for gluon saturation phenomenology

However, in both papers only the qq̄g contribution was calculated
explicitly, whereas NLO corrections to the qq̄ contribution were guessed.
Methods used for that:
In Balitsky, Chirilli, PRD83 (2011):
Matching with earlier vacuum results ?
⇒ NLO qq̄ terms needs to be calculated separately
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Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave
background, in light-front perturbation theory:

σγλ = 2Nc

∑̃
q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+)

2q+

∣∣∣ψ̃γλ→q0q̄1

∣∣∣2 Re [1− S01]

+ 2NcCF

∑̃
q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2 −q+)

2q+

×
∣∣∣ψ̃γλ→q0q̄1g2

∣∣∣2 Re
[
1− S(3)

012

]
+ · · ·

ψ̃γλ→f : color-stripped light-front wavefunctions of the incoming photon
for the Fock-state decomposition in mixed-space (k+, x)

Tripole operator: S(3)
012 ≡

1

Nc CF
Tr
(
tbUF (x0) taU†F (x1)

)
UA(x2)ba
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One-loop correction to the γT,L → qq̄ LF wave-functions

Calculation of the γT ,L → qq̄ LF wave-functions at NLO

Calculation done in Light-front perturbation theory for QCD+QED

Cut-off k+
min introduced to regulate the small k+ divergences

⇒ associated with low-x leading logs to be resummed with
BK/JIMWLK evolution at the end

UV divergences from various tensor transverse integrals, but no UV
renormalization at this order.

⇒ UV divergences (and finite regularization artifacts) have to cancel
at cross-section level

⇒ Use (Conventional) Dimensional Regularization, and pay
attention to rational terms in (D − 4)/(D − 4)
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for the γT → qq̄ LF wave-function only

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

EDA EDLO

Diagram A’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

EDA EDLO

Diagram 1’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

EDB EDLO

Diagram B’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

EDB EDLO

Diagram 2’

All four vanish due to Lorentz symmetry!
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: 3 steps graphs

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

0′′

EDLO EDA EDLO

Diagram A

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

1′′

EDLO EDB EDLO

Diagram B

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

1′

EDV EDA EDLO

Diagram 1

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

1′

EDV EDB EDLO

Diagram 2
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: 2 steps graph

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

1′

EDV EDLO

Diagram 3

In the γT case: vanishes due to Lorentz symmetry

In the γL case: non-zero, and cancels the unphysical power-like small
k+ divergence of the other vertex correction graphs.
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One-loop correction to the γT,L → qq̄ LF wave-functions

Results for NLO γT ,L → qq̄ LFWFs in momentum space

ψγ∗T,L→q0q̄1 =

[
1 +

(
αs CF

2π

)
VT ,L

]
ψtree
γ∗T,L→q0q̄1

+O(e α2
s )

VL = 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
Γ
(
2− D

2

) (
Q

2

4π µ2

) D
2 −2

− 2 log
(

P2+Q
2

Q
2

)]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

VT = VL + 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] (
P2+Q

2

P2

)
log
(

P2+Q
2

Q
2

)
+ O (D−4)

Notations: Q
2 ≡ k+

0 k+
1

(q+)2 Q
2,

and relative transverse momentum: P ≡ k0− k+
0

q+ q = −k1 +
k+

1

q+ q

Remark: results consistent with the ones of Boussarie, Grabovsky,

Szymanowski and Wallon, JHEP11(2016)149
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One-loop correction to the γT,L → qq̄ LF wave-functions

Results for NLO γT ,L → qq̄ LFWFs in mixed space

ψ̃γ∗T,L→q0q̄1 =

[
1 +

(
αs CF

2π

)
ṼT ,L

]
ψ̃tree
γ∗T,L→q0q̄1

+O(e α2
s )

ṼT = ṼL + O (D−4)

= 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
1

(2−D
2 )
−Ψ(1) + log

(
π µ2 x01

2
)]

+ 1
2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

In mixed space: NLO corrections ⇒ rescaling of the LO γT ,L → qq̄
LFWFs by a factor independent of the photon polarization and
virtuality !

Leftover logarithmic UV and low k+ divergences to be dealt with at
cross-section level.
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+O(e α2
s )

ṼT = ṼL + O (D−4)

= 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
1

(2−D
2 )
−Ψ(1) + log

(
π µ2 x01

2
)]

+ 1
2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 5
2 + 1

2 + O (D−4)

In mixed space: NLO corrections ⇒ rescaling of the LO γT ,L → qq̄
LFWFs by a factor independent of the photon polarization and
virtuality !

(D − 4)/(D − 4) rational term 1/2: from γµ algebra in D
dimensions ⇒ UV regularization scheme dependent!
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DIS at NLO in the dipole factorization: combining the pieces

From LFWFs to DIS cross-section

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2

ψ̃
γ∗T,L
γ∗T,L→q̄ now known at NLO accuracy in Dim Reg.

⇒ Need to be combined with the qq̄g contribution in the dipole
factorization formula at NLO

⇒ ψ̃γ∗T,Lqq̄g is required also in Dim Reg, in order to cancel UV
divergences as well as scheme dependent artifacts.

Only the case of σγL will be discussed in the following for simplicity. The
case of σγT can be dealt with in the same way, but gives much longer
expressions.
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DIS at NLO in the dipole factorization: combining the pieces

qq̄ contribution to σγL at NLO in dim. reg.

ψ̃tree
γ∗
L
→q0 q̄1

= −e ef µ2− D
2 (2π)1− D

2 2Q
k+

0
k+

1
(q+)2

(
Q
|x01|

) D
2
−2

K D
2
−2

(
|x01|Q

)
uG (0) γ+vG (1)

σγL

∣∣∣
qq̄

= 2Nc

∑̃
q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+)

2q+

∣∣∣ψ̃tree
γL→q0q̄1

∣∣∣2 Re [1− S01]

×
[

1 +

(
αs CF

2π

)
ṼL

]2

+ O(αem α
2
s )

σγL

∣∣∣
qq̄

= 4Nc αem

∑
f

e2
f

∫
dD−2x0

2π

∫
dD−2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+)

× 4Q2

(q+)5 (k+
0 k+

1 )2
[

Q
2

(2π)2µ2x2
01

] D
2 −2 [

K D
2 −2

(
|x01|Q

)]2

×
[
1 +

(
αs CF

π

)
ṼL
]
Re [1− S01] + O(αem α

2
s )
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DIS at NLO in the dipole factorization: combining the pieces

Tree-level diagrams for γL → qq̄g LFWFs

2 diagrams contribute to γL → qq̄g (and 4 to γT → qq̄g):

γ∗L : q+ , Q2

0

1

2

Diagram (a)

γ∗L : q+ , Q2

0

1

2

Diagram (b)

→ Standard calculation in momentum space using LFPT rules, but to be
done in dimensional regularization

Then: Fourier transform to mixed space
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DIS at NLO in the dipole factorization: combining the pieces

γL → qq̄g LFWF in mixed space

Result:

ψ̃Tree
γ∗L→q0q̄1g2

= e ef g ε
j∗
λ2

2Q
(q+)2

×
{
k+

1 uG (0)γ+
[
(2k+

0 +k+
2 )δjm +

k+
2

2 [γj , γm]
]
vG (1) Im

(
x0+2;1, x20;Q

2

(a), C(a)

)
−k+

0 uG (0)γ+
[
(2k+

1 +k+
2 )δjm − k+

2

2 [γj , γm]
]
vG (1) Im

(
x0;1+2, x21;Q

2

(b), C(b)

) }
with the notations:

Q
2

(a) =
k+

1 (q+−k+
1 )

(q+)2 Q2 and Q
2

(b) =
k+

0 (q+−k+
0 )

(q+)2 Q2

C(a) =
q+ k+

0 k+
2

k+
1 (k+

0 +k+
2 )2 and C(b) =

q+ k+
1 k+

2

k+
0 (k+

1 +k+
2 )2

And parent dipole vectors defined as:

xn+m;p = −xp;n+m ≡
(
k+
n xn + k+

mxm
k+
n +k+

m

)
− xp
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DIS at NLO in the dipole factorization: combining the pieces

qq̄g contribution to σγL at NLO in dim. reg.

σγL |qq̄g = 2NcCF

∑̃
q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2−q

+)
2q+

∣∣∣ψ̃γL→q0q̄1g2

∣∣∣2 Re
[
1− S(3)

012

]
= 4Nc αem

∑
f

e2
f

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

∫ +∞

k+
min

dk+
2

k+
2
δ(k+

0 +k+
1 +k+

2 −q+)

× 2αsCF

∫
dD−2x0

∫
dD−2x1

∫
dD−2x2 Re

[
1− S(3)

012

]
4Q2

(q+)5

×
{

(k+
1 )2

[
2k+

0 (k+
0 +k+

2 )+ (D−2)
2

(
k+

2

)2
] ∣∣∣Im ((a))

∣∣∣2
+(k+

0 )2
[
2k+

1 (k+
1 +k+

2 )+ (D−2)
2

(
k+

2

)2
] ∣∣∣Im ((b))

∣∣∣2
−k+

0 k+
1

[
2(k+

0 +k+
2 )k+

1 + 2k+
0 (k+

1 +k+
2 )− (D−4)(k+

2 )2
]

×Re
(
Im ((a))∗ Im ((b))

)}
+ O(αem α

2
s )
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DIS at NLO in the dipole factorization: combining the pieces

UV divergences of the qq̄g contribution to σγL

UV divergences :

At x2 → x0 for |(a)|2 contribution

At x2 → x1 for |(b)|2 contribution

Traditional method to deal with these UV divergences:

1 Make the subtraction
[
1−S(3)

012

]
→
[
1−S(3)

012

]
−
[
1−S01

]
in σγL |qq̄g

2 Add the corresponding term to σγL |qq̄
It works for the divergences, but it is far from optimal in the present case!
⇒ Let us present an improvement of that method.
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DIS at NLO in the dipole factorization: combining the pieces

Properties of the Fourier integral

Im
(
r, r′;Q

2
, C
)
≡ (µ2)2− D

2

∫
dD−2P

(2π)D−2

∫
dD−2K

(2π)D−2
Km e iK·r

′
e iP·r[

P2+Q
2
]{

K2+C
[
P2+Q

2
]}

Introducing Schwinger variables:

Im
(
r, r′;Q

2
, C
)

= r′m
(
r′2
)1− D

2 i
2 (2π)2−D (µ2

)2− D
2

×
∫ +∞

0

dσ σ1− D
2 e−σQ

2

e−
r2

4σ Γ
(

D
2 −1, r

′2C
4σ

)

For D = 4:

Im
(
r, r′;Q

2
, C
)

= i
(2π)2

(
r′m

r′2

)
K0

(
Q
√

r2 + C r′2
)

UV behavior: For |r′| → 0 : Im
(
r, r′;Q

2
, C
)
∼ ImUV

(
r, r′;Q

2
)

ImUV
(
r, r′;Q

2
)
≡ r′m

(
r′2
)1− D

2 i
(2π)2 Γ

(
D
2 −1

) (
2Q

(2π)2µ2|r|

) D
2 −2

K D
2 −2

(
Q |r|

)
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DIS at NLO in the dipole factorization: combining the pieces
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)

= i
(2π)2

(
r′m

r′2
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K0

(
Q
√

r2 + C r′2
)
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r, r′;Q

2
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)
∼ ImUV

(
r, r′;Q

2
)

ImUV
(
r, r′;Q

2
)
≡ r′m

(
r′2
)1− D

2 i
(2π)2 Γ

(
D
2 −1

) (
2Q

(2π)2µ2|r|

) D
2 −2

K D
2 −2

(
Q |r|

)
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Properties of the Fourier integral
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Building the UV subtraction terms

Next attempt to deal with the UV divergences : make the subtraction{∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
−
∣∣∣ImUV(x01, x20;Q

2

(a)

) ∣∣∣2 Re
[
1− S01

]}

Cancels indeed the UV divergence at x2 → x0, but produces an IR
divergence at |x20| → +∞, absent in the original term!
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Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as{∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
−
[∣∣∣ImUV(x01, x20;Q

2

(a)

) ∣∣∣2
−Re

(
Im∗UV

(
x01, x20;Q

2

(a)

)
ImUV

(
x01, x21;Q

2

(a)

))]
Re
[
1− S01

]}
This difference leads to a UV and IR finite integral in x2.

⇒ The D → 4 limit is now safe to take:

→
{

1

(2π)4

1

x2
20

[
K0

(
Q X012

)]2

Re
[
1− S(3)

012

]
− 1

(2π)4

[
x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)] [
K0

(
Q

2

(a) |x01|
)]2

Re
[
1− S01

]}

Q2X 2
012 ≡

Q2

(q+)2

[
k+

0 k+
1 x2

01 + k+
0 k+

2 x2
02 + k+

1 k+
2 x2

12

]
=

qq̄g form. time

γ∗ life time
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UV-subtracted qq̄g contribution to σγL

Subtracting both UV divergences this way:

σγL |qq̄g − σ
γ
L |UV ,|(a)|2 − σγL |UV ,|(b)|2

= 4Nc αem

∑
f e

2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

(q+)5
αsCF

π

×
∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]

With:

q term = (k+
1 )2

[
2k+

0 (k+
0 +k+

2 )+
(
k+

2

)2
] [x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)]
×
{[

K0(QX012)
]2

Re
[
1−S012

]
−
(
x2 → x0

)}
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UV-subtracted qq̄g contribution to σγL

Subtracting both UV divergences this way:

σγL |qq̄g − σ
γ
L |UV ,|(a)|2 − σγL |UV ,|(b)|2

= 4Nc αem

∑
f e

2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2
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π
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k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]
With:

leftover = (k+
2 )2
[
(k+

0 )2 + (k+
1 )2
] (

x20

x2
20
· x21

x2
21

) [
K0(QX012)

]2

Re
[
1−S012

]
{}
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Combining the UV terms with the qq̄ contribution to σγL

In dim. reg., the UV subtraction terms can be written as

σγL |UV ,|(a)|2 + σγL |UV ,|(b)|2

= 4Nc αem

∑
f

e2
f

∫
dD−2x0

2π

∫
dD−2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+)

× 4Q2

(q+)5 (k+
0 k+

1 )2
[

Q
2

(2π)2µ2x2
01

] D
2 −2 [

K D
2 −2

(
|x01|Q

)]2

×
(
αs CF

π

) [
ṼL
UV ,|(a)|2 + ṼL

UV ,|(b)|2

]
Re [1− S01]

With:

ṼL
UV ,|(a)|2 = Γ

(
D

2
−2

) (
πµ2x2

01

)2− D
2

[
log

(
k+

min

k+
0

)
+

3

4
− (D−4)

8

]
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Combining the UV terms with the qq̄ contribution to σγL
Expanding around D = 4:

ṼL
UV ,|(a)|2 + ṼL

UV ,|(b)|2 = −2

[
1

(2−D
2 )
−Ψ(1) + log

(
π x01

2 µ2
)]

×
[

log

(
k+

min√
k+

0 k+
1

)
+ 3

4

]
− 1

2 + O(D−4)

But in the qq̄ contribution to σγL :

ṼL = 2

[
1

(2−D
2 )
−Ψ(1) + log

(
π x01

2 µ2
)] [

log

(
k+

min√
k+

0 k+
1

)
+ 3

4

]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 5
2 + 1

2 + O(D−4)

⇒ Cancelation of:

the UV divergence

the k+
min dependence

the ±1/2 rational term : strong hint of UV regularization scheme
independence
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Combining the UV terms with the qq̄ contribution to σγL

Final result for the dipole-like terms:

σγL |qq̄ + σγL |UV ,|(a)|2 + σγL |UV ,|(b)|2

= 4Nc αem

∑
f

e2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+) 4Q2

(q+)5

×(k+
0 k+

1 )2
[
K0

(
|x01|Q

)]2 [
1 +

(
αs CF

π

)
ṼL
reg.

]
Re [1− S01]

With:

ṼL
reg. ≡ ṼL + ṼL

UV ,|(a)|2 + ṼL
UV ,|(b)|2

=
1

2

[
log

(
k+

0

k+
1

)]2

− π2

6
+

5

2
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Final step: BK/JIMWLK resummation

1 Assign k+
min to the scale set by the target: k+

min =
Q2

0

2x0 P−
=

xBj Q
2
0

x0 Q2 q+

2 Choose a factorization scale k+
f . k+

0 , k
+
1 , corresponding to a range

for the high-energy evolution Y +
f ≡ log

(
k+
f

k+
min

)
= log

(
x0 Q

2 k+
f

xBj Q2
0 q+

)
3 In the LO term in the observable, make the replacement

〈S01〉0 = 〈S01〉Y +
f
−
∫ Y +

f

0

dY +
(
∂Y +〈S01〉Y +

)
with both terms calculated with the same evolution equation

4 Combine the second term with the NLO correction to cancel its k+
min

dependence and the associated large logs.

⇒ Works straightforwardly in the case of

the naive LL BK equation

the kinematically improved BK equation as implemented in
G.B., PRD89 (2014)

Should also work with the other implementation (Iancu et al., PLB744

(2015)), but might require a bit more work.
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Conclusion

1 Direct calculation of γT ,L → qq̄ LFWFs at one-gluon-loop order,
both in momentum and in mixed space

2 Full NLO corrections to FL and FT from the combination of the qq̄
and qq̄g contributions, with improved method to cancel UV
divergences

Phenomenology outlook : All ingredients soon available for fits to HERA
data at NLO+LL accuracy, and hopefully NLO+NLL
accuracy, in the dipole factorization, including gluon
saturation.

Theory outlook : Application of the NLO γT ,L → qq̄(g) LFWFs to
calculate other DIS observables at NLO?

Extension to the case of massive quarks?

Comparison to other calculations of photon impact
factor at NLO ?
Bartels et al.(2001-2004); Balitsky, Chirilli (2011-2013)
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