25th International Workshop on Deep Inelastic Scattering and Related Topics April 3-7, 2017 at Birmingham (UK)

Update on extraction of transversity PDF from inclusive di-hadron production

Marco Radici

INFN - Pavia

in collaboration with A. Bacchetta (Univ. Pavia)

European Research Council

Outline (very simple..)

first extraction of transversity PDF from a global fit of semi-inclusive data PRELIMINARY !

SIDIS

p-p collisions

leading-twist PDF map

transversity distribution $h_1(x)$

flips helicity (chiral-odd) → suppressed in inclusive DIS

all three PDFs needed for a complete description of proton (spin) structure at leading order

Transversity poorly known

slide from H.Montgomery, QCD Evolution 2016

But transversity is interesting !

1st Mellin moment of transversity \Rightarrow tensor "charge" $P^{[\mu} S^{\nu]} g_T^q (Q^2) = P^{[\mu} S^{\nu]} \int_0^1 dx \left[h_1^q (x, Q^2) - h_1^{\bar{q}} (x, Q^2) \right]$ $= \langle P, S | \bar{q} \sigma^{\mu\nu} q | P, S \rangle$

tensor charge not directly accessible in \mathcal{L}_{SM} low-energy footprint of new physics at higher scales ?

Example: neutron β -decay $n \rightarrow p e^- \overline{\nu}_e$

 $\epsilon_T g_T \approx M_W^2 / M_{BSM}^2$

precision of 0.1% \Rightarrow [3-5] TeV bound for BSM scale

Transversity from Collins effect

very compatible no sensitivity to evolution

Kang et al (2015) Anselmino et al (2013)

0.01 0.1

comparison with Collins effect

comparison with Collins effect

0 0.2 0.4 0.6 0.8 1

origin of saturation of Soffer bound

neutron β-decay <—> isovector tensor charge

current most stringent constraints on BSM tensor coupling from $\pi^+ \rightarrow e^+ \nu_e \gamma$ and neutron β -decay is $|\mathbf{\epsilon}_T | \mathbf{g}_T| \leq 5 \times 10^{-4}$

Bychkov et al. (PIBETA), P.R.L. **103** (09) 051802 Pattie et al., P.R. C**88** (13) 048501 4) PNDME '15 Bhattacharya et al., P.R. D92 (15)
5) LHPC '12 Green et al., P.R. D86 (12)
6) RQCD '14 Bali et al., P.R. D91 (15)
7) RBC-UKQCD Aoki et al., P.R. D82 (10)

 8) ETMC '15
 Abdel-Rehim et al., P.R.D92 (15);

 9) " " E P.R.D93 (16)

comparison with previous fit

comparison with previous fit

comparison with Collins effect

Conclusions

- first global fit of di-hadron inclusive data leading to extraction of transversity in collinear framework (PRELIMINARY!)
- inclusion of STAR p-p[†] data increases precision of extracted transversity up and makes transversity down more compatible with one from Collins effect (with respect to our previous extraction from SIDIS + e⁺e⁻ data only)
- tensor charge useful for low-energy explorations of BSM new physics ⇒ precision is an issue
 - N.B. to this goal, need $d\sigma^0$ for e^+e^- and p-p to constrain di-hadron fragm. funct. D₁, particularly for gluons

Conclusions

- first global fit of di-hadron inclusive data leading to extraction of transversity in collinear framework (PRELIMINARY!)
- inclusion of STAR p-p[†] data increases precision of extracted transversity up and makes transversity down more compatible with one from Collins effect (with respect to our previous extraction from SIDIS + e⁺e⁻ data only)
- tensor charge useful for low-energy explorations of BSM new physics ⇒ precision is an issue
 - N.B. to this goal, need $d\sigma^0$ for e^+e^- and p-p to constrain di-hadron fragm. funct. D₁, particularly for gluons

THANK YOU

backup slides

minimization of p-p matrix element

Bacchetta & Radici, P.R. D70 (04) 094032

$$d\boldsymbol{\sigma} \sim d\boldsymbol{\sigma}^{0} + \sin(\boldsymbol{\Phi}_{S} - \boldsymbol{\Phi}_{R}) d\boldsymbol{\sigma}_{UT} \qquad A_{UT} = \frac{d\sigma_{UT}}{d\sigma^{0}}$$

$$\frac{d\sigma_{UT}}{d\eta \, d|\boldsymbol{P}_{T}| \, dM} = |\boldsymbol{S}_{BT}| \, 2 \, |\boldsymbol{P}_{T}| \, \frac{|\boldsymbol{R}|}{M} \sin \theta \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2} \bar{z}} f_{1}^{a}(x_{a}) \, h_{1}^{b}(x_{b}) \, \frac{d\Delta \hat{\sigma}_{ab^{\uparrow} \to c^{\uparrow} d}}{d\hat{t}} \, H_{1}^{\triangleleft c}(\bar{z}, M)$$

$$\hat{t} = t \, x_{a} / \bar{z}$$

$$A_{UT}(\boldsymbol{\eta}) \rightarrow \begin{pmatrix} \left(\begin{array}{c} 5 \text{-dimensional integral} \\ (<\boldsymbol{\eta} >_{\text{bin}, P_{T}, M, x_{a}, x_{b}) \\ + \text{ evolution in each } P_{T} \end{array} \right) \\ \text{for each set of parameters} \\ \text{chosen by MINUIT} \\ \text{for each replica} \end{pmatrix}$$

need a super-computer !

minimization of p-p matrix element

usual trick: use Mellin transform & anti-transform

$$h_1^N(Q^2) = \int_0^1 dx \, x^{N-1} \, h_1(x, Q^2)$$

$$h_1(x, Q^2) = \int_{\mathcal{C}_N} dN \, x^{-N} \, h_1^N(Q^2)$$

$$N \in \mathbb{C}$$

Stratmann & Vogelsang, P.R. D64 (01) 114007

$$\frac{d\sigma_{UT}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = |\mathbf{S}_{BT}| \, 2 \, |\mathbf{P}_{T}| \, \frac{|\mathbf{R}|}{M} \sin \theta \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} f_{1}^{a}(x_{a}) h_{1}^{b}(x_{b}) \frac{d\Delta \hat{\sigma}_{ab^{\uparrow} \to c^{\uparrow}d}}{d\hat{t}} \, H_{1}^{\triangleleft c}(\bar{z}, M)$$
$$d\sigma_{UT}(\eta) = \int_{\mathcal{C}_{N}} dN \, h_{1}^{N}(P_{T}^{2}) \, \int d|\mathbf{P}_{T}| dM dx_{a} dx_{b} \, x_{b}^{-N} \, F(\eta, N; \, |\mathbf{P}_{T}|, M, x_{a}, x_{b})$$
for each **n** bin, pre-compute integrals on contour

this speeds up convergence and facilitates $\int dN$, provided that h_1^N is known analytically

minimization of p-p matrix element

$$d\sigma_{UT}(\eta) = \int_{\mathcal{C}_N} dN h_1^N(P_T^2) \int d|\mathbf{P}_T| dM dx_a dx_b x_b^{-N} F(\eta, N; |\mathbf{P}_T|, M, x_a, x_b)$$

numerical Mellin transform

opposite convergence criteria

approximation:

- pre-compute integrals on C_N
- compute Mellin transform on \hat{C}_N

$$\hat{\mathbf{C}}_N = C_N \text{ for } \operatorname{Re} N \ge 1.7$$