

Overview of transverse spin physics in the PHENIX experiment

Marie Boër, Los Alamos National Laboratory, USA, on behalf of the PHENIX collaboration.

Deep Inelastic Scattering Conference, April 3 – 7, 2017, Birmingham, UK.

The PHENIX experiment at RHIC and runs with polarized proton beam

View of the Brookhaven National Laboratory, NY, USA

	erit a	STAR	_
C	NSRL *	August 1	
EE S			
BOOST R	AG		_
	ATT CLAY		
	l .		

PHENIX experimental Hall

Year	√s (GeV)	Recorded Luminosity for longitudinally / transverse polarized p+p STAR	Recorded Luminosity for longitudinally / transverse polarized p+p PHENIX	<p> in %</p>	
2006	62.4	pb ⁻¹ / 0.2 pb ⁻¹ 6.8 pb ⁻¹ / 8.5 pb ⁻¹	0.08 pb ⁻¹ / 0.02 pb ⁻¹ 7.5 pb ⁻¹ / 2.7 pb ⁻¹	48 57	
2008	200	pb ⁻¹ / 7.8 pb ⁻¹	pb ⁻¹ / 5.2 pb ⁻¹	45	
2009	200 500	25 pb ⁻¹ / pb ⁻¹ 10 pb ⁻¹ / pb ⁻¹	16 pb ⁻¹ / pb ⁻¹ 14 pb ⁻¹ / pb ⁻¹	55 39	
2011	500	12 pb ⁻¹ / 25 pb ⁻¹	18 pb ⁻¹ / pb ⁻¹	48	
2012	200 510	pb ⁻¹ / 22 pb ⁻¹ 82 pb ⁻¹ / pb ⁻¹	pb ⁻¹ / 9.7 pb ⁻¹ 32 pb ⁻¹ / pb ⁻¹	61/56 50/53	
2013	510	300 pb ⁻¹ / pb ⁻¹	155 pb ⁻¹ / pb ⁻¹	51/52	
2015	200	52 pb ⁻¹ / 52 pb ⁻¹	pb ⁻¹ / 60 pb ⁻¹	53/57	
2015 (200 p A	u total delivered Lui	$minosity = 1.27 \text{ pb}^{-1}$	60	
2015 (200 p A		total delivered Luminosity = 3.97 pb ⁻¹		

O: Trasversely polarized

Run 2015 : for the first time, polarized p+A collisions.

PHENIX spectrometer, cut view

Mid rapidity, central arm: $|\eta|$ < 0.35 => charged hadrons with PID, π° , η ...

Forward rapidity, muon arms: 1.2 < $|\eta|$ < 2.4 => charged hadrons, muons, J/ ψ ...

Forward rapidity, muon Piston Calorimeters: 3.1 < $|\eta|$ < 3.9 => π° , η

Transverse spin physics and non zero asymmetry effects

Goal: transverse structure of the nucleon with transverse spin asymmetries. Single transverse spin asymmetry A_{N} in p+p (A) collisions could be induced by:

Sivers Effect

Interaction Effects

Collins Effect

Coupling of quark orbital motion to nucleon spin. Initial state effect in hadron-hadron collisions.

Parton-level asymmetric scattering

Gluon exchanges, Initial and final state q+g and g+g coupling.

Polarized parton undergoes asymmetric fragmentation

Fragmentation of polarized quarks in polarized nucleon into hadrons. Final state effect.

Fig. : Y. Kovchegov, et al. Phys.Rev. D86 (2012) 034028

M. Boër, LANL

Transverse Momentum Distributions versus Collinear factorization framework: low / high p₊ approach

Transverse Momentum Distributions – k₊ dependent approach

Transversity h₁: quark and nucleon spin correlation

Sivers f_{1T}^{\perp} : correlation between proton transverse spin and non zero transverse momentum of quarks

Boer-Mulders h_1^{\perp} : correlation between quarks transverse spin and their non-zero momentum k_{\perp}

Twist 3 multiparton correlation functions and fragmentation functions correspond to initial and final state interactions and correspond to $k_{\scriptscriptstyle \perp}$ moments of integrals of TMDs.

Diagrams: J.Qiu talk at BNL, 2005

Higher twist effect and gg + gq correlations must be dominant at RHIC energies

Azimuthal dependences in p+p collisions and observables

Scheme of p+p collision, Φ_s = spin angle.

What we are measuring: Transversely polarized Single Spin Asymmetry

$$A_N = \frac{\sigma_L^{\uparrow} - \sigma_R^{\uparrow}}{\sigma_L^{\uparrow} + \sigma_R^{\uparrow}}$$

Azimuthal dependence of unpolarized and polarized cross sections and spin asymmetries comes from non zero quark transverse momentum $\mathbf{k}_{_{\!\!\mathsf{T}}}$ and nucleon spin

Recent PHENIX results with transversely polarized beam

- 1) Transverse spin asymmetry in light hadrons production: inclusive π° and η mesons production at mid- and forward- rapidity in p+p collisions, and nuclear dependences in p+A collisions.
- 2) Transverse spin asymmetry in open heavy flavor production: inclusive D-mesons production (dominant) at forward rapidity in p+p collisions.
- 3) Transverse spin asymmetry in inclusive J/ψ production at forward rapidity in p+p collisions.
- 4) Transverse spin asymmetry in neutron production and nuclear dependences: see Gaku Mitsuka presentation later in this session.

1) Transverse spin asymmetry in light hadrons production : π° and η

Mid-rapidity: $|\eta| < 0.35$

 π° and ηA_{N} in p+p at 200 GeV

 A_N were found consistent with zero for the whole p_T range in p+p collisions within statistic uncertainties.

A. Adare et al. (PHENIX Collaboration) PRD 90, 012006 (2014)

Nuclear dependence at mid-rapidity of A, (π°)

p+Au and p+Al collisions

 A_{N} versus p_{T} for p+p, p+Au, p+Al

 A_{N} integrated over p_{\perp} as a function of A:

Results are consistent with zero asymmetry for p+p, p+Au and p+Al collisions, and no quantifiable nuclear dependence.

PHENIX

DIS 2017, Birmingham, UK

1) Transverse spin asymmetry in light hadrons production: π° and η π° at forward rapidity

Transverse spin physics at PHENIX

M. Boër, LANLx_F

Unexpected large A_N at PHENIX energy!

- Large asymmetries measured at forward rapidity, while zero at mid- (last slide) and backward rapidity.
- weak energy dependence
- tend to increase with x_r > 0 and p_r

Phys. Rev. D 90, 012006 (2014) DIS 2017, Birmingham, UK 10/18

1) Transverse spin asymmetry in light hadrons production : π° and η η at forward rapidity

Large asymmetry at forward rapidity in both π° and η production, at same level.

Pink fit: twist-3 calculations using quark-gluon correlation functions

PhysRevD.90.072008 (2015)

2) Open heavy flavor transverse spin asymmetry

Dominated by gluon-gluon interactions

Collinear factorization approach: production dominated by tri-gluon correlation

Sensitive to gluon Sivers function, as moment related to correlation function (see btw Kang et al, Phys.Rev.D83:094001,2011)

=> non zero asymmetry would be expected from initial state effect in case gluon function is large

2) Open heavy flavor transverse spin asymmetry (vs pT)

- Main contribution to single muons: D-meson decay (~ 60% to 92% at lower p_⊤)
- Decay into μ+ and μ- comparison
- Results consistent with zero within uncertainties
- Model predictions at twist 3 within collinear factorization framework consistent with measurement. Original calculations for D meson translated to single μ decay.

Twist 3 model: Y. Koike, S. Yoshida, PRD84:014021 (2011)

AN calculations for D mesons provided by S. Yoshida.

New result!

arXiv:1703.09333

PH KENIX M. Boër, LANL

Transverse spin physics at PHENIX

DIS 2017, Birmingham, UK

2) Open heavy flavor transverse spin asymmetry (vs xF)

decay into µ+

- Main contribution to single muons: D-meson decay (~ 60% to 92% at lower p_→)
- Decay into μ+ and μ- comparison
- Results consistent with zero within uncertainties
- Model predictions at twist 3 within collinear factorization framework consistent with measurement. Original calculations for D meson translated to single μ decay.

Twist 3 model: Y. Koike, S. Yoshida, PRD84:014021 (2011)

AN calculations for D mesons provided by S. Yoshida.

New result!

arXiv:1703.09333

3) Transverse spin asymmetry in inclusive J/ψ production

Sensitive to production mechanism: only color singlet produce non zero A_N

Color singlet

Color octet

Initial state interaction

Final state interaction

Comparison:

4 data sets, last one in 2015 with x5 improved luminosity

Run	Luminosity	Pol
Run6	1.8 pb ⁻¹	53%
Run8	4.5 pb ⁻¹	45%
Run12	9.2 pb ⁻¹	60%
Run15	50 pb ⁻¹	60%

3) Transverse spin asymmetry in inclusive J/ψ production in p+p

Run 2015: x5 statistics compared to all other sets. Small stat. errors^x

A_N consistent with 0 within stat. uncertainties

Phys. Rev. D 82, 112008 (2010)

PH KENIX M. Boër, LANL

Transverse spin physics at PHENIX

DIS 2017, Birmingham, UK

16/18

Summary and Perspectives

Transverse spin asymmetries in light hadron production

- Measured from inclusive π° and η production in p+p and recently in p+A,
- Asymmetries are found compatible with zero at mid-rapidity, and no significant nuclear dependence is measured,
- Large asymmetries at forward rapidity: unexpected at PHENIX energy,
- Forward asymmetries are well described by twist 3 models.

Transverse spin asymmetries in heavy quarks production

- Open heavy flavor (D-mesons): compatible with zero within uncertainties,
- J/Ψ: compatible with zero within uncertainties.

Perspectives

- Ongoing analysis of processes presented here with new data, with p+p and p+A improved statistics: more interesting results in perspective!
- Ongoing forward single hadron analysis in broad rapidity range: results soon!
- Ongoing analysis of forward Drell-Yan A_N for Sivers-like effect and comparison with SIDIS measurements: result very soon. See next slide.

Don't miss G. Mitsuka presentation on neutron A_N!

Outlook: Drell-Yan analysis in PHENIX

Ongoing analysis of Drell-Yan A_N, sensitive to Sivers effect. <u>Goal</u>: compare to SIDIS mes.

Mass distribution and various signal + background contributions to the dimuons spectrum

Kinematics at
$$\sqrt{s} = 200 \text{ GeV}$$
:

1.2 <
$$|y|$$
 < 2.2
 $x_F \sim 10^{-1}$
0.5 < $q_T < \sim 5$ GeV

Fig. from PHENIX DY proposal, courtesy of Ming Liu. Simulations using Pythia 6 event generator.

Main challenge: background reduction and limited statistics available (run 2015 p+p).

Drell-Yan A_N result coming very soon : keep in touch !

Thank you!

Please address any further questions to: mboer@rcf.rhic.bnl.gov or to any member of the PHENIX collaboration