Illuminating Nucleon Structure Through Polarized Proton-Proton Collisions at STAR

James L. Drachenberg

Lamar University

25th International Workshop on Deep Inelastic Scattering and Related Topics April 5, 2017

OUTLINE

- Introduction
- RHIC and STAR
- Recent Developments
- Near-term Plans
- Summary

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

Helicity

Recent results enable a better picture of gluon and sea-quark helicity

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

Helicity

Recent results enable a better picture of gluon and sea-quark helicity

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

- Helicity
- Transversity

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

- Helicity
- Transversity

Multiple mechanisms in play to constrain transverse spin-structure

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

- Helicity
- Transversity

Multiple mechanisms in play to constrain transverse spin-structure

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

- Helicity
- Transversity
- Higher dimensions

Non-collinear probes, e.g. TMDs, enable multidimensional imaging

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

- Helicity
- Transversity
- Higher dimensions

Non-collinear probes, e.g. TMDs, enable multidimensional imaging

Opportunities with $p^{\uparrow} + p$:

Tests of Evolution? Factorization and Universality?

Relativistic Heavy Ion Collider

RHIC as Polarized-proton Collider

- "Siberian Snakes" → mitigate depolarization resonances
- Spin rotators provide choice of spin orientation independent of experiment
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Spin pattern varies fill-to-fill

Solenoidal Tracker at RHIC

Polarized-proton Datasets at RHIC

Unique opportunities to probe nucleon spin structure!

Transverse Luminosity Recorded

Year	\sqrt{s} [GeV]	STAR	PHENIX	⟨ <i>P</i> ⟩ [%]		
2006	200	8.5 pb ⁻¹	2.7 pb ⁻¹	57		
2006	62.4	0.2 pb ⁻¹	0.02 pb ⁻¹	48		
2008	200	7.8 pb ⁻¹	5.2 pb ⁻¹	45		
2011	500	25 pb ⁻¹		53/54		
2012	200	22 pb ⁻¹	9.7 pb ⁻¹	61/58		
2015	200	53 pb ⁻¹	52 pb ⁻¹	53/57		
2015	200 pAu	0.42 pb ⁻¹	0.20 pb ⁻¹	60		
2015	200 pAl	1.0 pb ⁻¹		54		

PHENIX numbers for $|z_{\rm vtx}| < 40~{\rm cm}$

Polarized-proton Datasets at RHIC

Unique opportunities to probe nucleon spin structure!

Year	\sqrt{s} [GeV]	STAR	PHENIX	⟨ <i>P</i> ⟩ [%]		
2006	200	8.5 pb ⁻¹	2.7 pb ⁻¹	57		
2006	62.4	0.2 pb ⁻¹	0.02 pb ⁻¹	48		
2008	200	7.8 pb ⁻¹	5.2 pb ⁻¹	45		
2011	500	25 pb ⁻¹		53/54		
2012	200	22 pb ⁻¹	9.7 pb ⁻¹	61/58		
2015	200	53 pb ⁻¹	52 pb ⁻¹	53/57		
2015	200 pAu	0.42 pb ⁻¹	0.20 pb ⁻¹	60		
2015	200 pAl	1.0 pb ⁻¹		54		

PHENIX numbers for $|z_{\rm vtx}| < 40$ cm

Dramatically increased figure of merit in recent years

Integrating more 510 GeV data, as we speak!

Sensitivity to Transversity at STAR

0.4

0.2

-0.2 0.1

0

-0.1

-0.2

 \mathbf{X}

Access to transversity in interesting region!

- Limited constraints
- Potentially large effects
- Sensitivity to evolution
- Insight into nature of Collins mechanism!

Sensitivity to Transversity at STAR

0.2 ┌

0.18

0.16

0.14

0.08

0.06

0.04

 $p + p \rightarrow jet + \pi^{\pm} + X$ at $\sqrt{s} = 200$ GeV

PYTHIA 6.4.22

Perugia 0 Tune

*Excluded:

 $q\overline{q} \rightarrow q'\overline{q}'$ qq → gg

 $gg \rightarrow q\overline{q}$

Access to transversity in interesting region!

- Limited constraints
- Potentially large effects
- Sensitivity to evolution
- Insight into nature of Collins mechanism!

0.50

 $x_F > 0$

■ X_F < 0

Comparison of Early STAR Data to Theory

A clear message from early results: Access to transversity effects at RHIC

Comparison of Early STAR Data to Theory

A clear message from early results: Access to transversity effects at RHIC

Overall *agreement* in terms of *invariant mass*

→ Same mechanism as in SIDIS!

Compare with models based on SIDIS/ e^+e^-

Band represents 68% of replicas deduced by fitting SIDIS and e^+e^- data

Comparison of Early STAR Data to Theory

A clear message from early results: Access to transversity effects at RHIC

Overall *agreement* in terms of *invariant mass*

→ Same mechanism as in SIDIS!

Deviation at more **forward** scattering

- → Tension with SIDIS?
- \rightarrow More information needed on D_q^1 ?

Compare with models based on SIDIS/ e^+e^-

Band represents 68% of replicas deduced by fitting SIDIS and e^+e^- data

Recent IFF Results at STAR

Much larger datasets collected at 500 and 200 GeV in 2011 and 2012

Significant non-zero di-hadron asymmetries at $\sqrt{s} = 200$ and 500 GeV!

• Increasing with pion p_T

Recent IFF Results at STAR

Much larger datasets collected at 500 and 200 GeV in 2011 and 2012

Significant non-zero di-hadron asymmetries at $\sqrt{s} = 200$ and 500 GeV!

• Increasing with pion p_T

Consistent behavior when scaled for $2\langle p_T \rangle/\sqrt{s}$

√s=500 GeV

 $\mathbf{p}^{\uparrow}+\mathbf{p} \rightarrow \pi^{+}+\pi^{-}+\mathbf{X}$

M_{inv} (GeV/c²)

Newest Collins Results at $\sqrt{s} = 200$ GeV

Newest Collins Results at $\sqrt{s} = 200$ GeV

Clear first observation of Collins asymmetry in p + p!

Newest Collins Results at $\sqrt{s} = 200$ GeV

STRONG dependence upon j_T

$$\begin{split} &j_{T,\text{min}} \approx z \times \Delta R_{\text{min}} \times \left\langle p_{T} \right\rangle, \\ &\Delta R = \sqrt{\left(\eta_{\text{jet}} - \eta_{\pi}\right)^{2} + \left(\phi_{\text{jet}} - \phi_{\pi}\right)^{2}} \end{split}$$

Clear first observation of Collins asymmetry in p + p!

STAR Collins Results at $\sqrt{s} = 500$ **GeV**

Non-zero Collins asymmetries observed at $\sqrt{s} = 500$ GeV!

• Strong dependence on $\Delta R_{\min}(j_{T,\min})$

STAR Collins Results at $\sqrt{s}=200$ and 500 GeV

Non-zero Collins asymmetries observed at $\sqrt{s} = 500$ GeV!

- Strong dependence on $\Delta R_{\min}(j_{T,\min})$
- Consistent with $\sqrt{s} = 200$ GeV results for consistent cuts and x_T

At the current precision, Collins results from p+p appear consistent with χ_T scaling

STAR Collins Results at $\sqrt{s}=200$ and 500 GeV

Compare with models based on $SIDIS/e^+e^-$

- Assume universality and robust factorization
- One model with TMD evolution up to NLL

Theory: Kang, Prokudin, Ringer, Yuan 2017 in preparation

Data: STAR Preliminary

STAR Collins Results at $\sqrt{s} = 200$ and 500 GeV

Compare with models based on $SIDIS/e^+e^-$

- Assume universality and robust factorization
- One model with TMD evolution up to NLL
- One model without TMD evolution

Theory: Kang, Prokudin, Ringer, Yuan 2017 in preparation

Data: STAR Preliminary

STAR Collins Results at $\sqrt{s} = 200$ and 500 GeV

Theory: Kang, Prokudin, Ringer, Yuan 2017 in preparation

Data: STAR Preliminary

Compare with models based on $SIDIS/e^+e^-$

- Assume universality and robust factorization
- One model with TMD evolution up to NLL
- One model without TMD evolution

Generally decent agreement between models and STAR data!

Slight preference for no evolution?

"Beauty is in the eye of the beholder!"

Weak Boson Asymmetries at $\sqrt{s} = 500$ GeV

Color interactions in QCD

Non-universality of the "Sivers" function

Drell-Yan or W: Initial-state interaction

Sivers_{DIS} = -Sivers_{Drell-Yan} or Sivers_W A_N for direct photon also has a closely related sign change

Opportunity to see the repulsive interaction between like color charges for the first time!

Can explore all of these observables in 500 GeV p+p collisions at RHIC!

Weak Boson Asymmetries at $\sqrt{s} = 500$ GeV

Exploratory Measurement from a small dataset

First Measurement of A_N for Weak Bosons! Global fit to the (unevolved) KQ prediction:

- solid line: assume Sivers sign change: $\chi^2/\nu = 7.4/6$
- dashed line: assume no sign change: $\chi^2/\nu = 19.6/6$

The Near-term Future: Sivers Sign-change+Evolution

STAR currently taking data at $\sqrt{s}=510$ GeV! W^{\pm} A_N can be sensitive to Sivers sign-change if TMD-evolution suppression factor ~ 5 or less Evaluate sign-change+evolution through W^{\pm}/Z , forward direct- γ (twist-3), and forward Drell-Yan Forward direct- γ at 200 GeV already in the bag!

The Near-term Future: Collins Evolution

Preliminary 2011 and 2012 Collins asymmetries suggest x_T scaling *Implications for TMD evolution?*

The Near-term Future: Collins Evolution

Higher precision in 2015 and 2017 will allow more precise comparison!

Preliminary 2011 and 2012 Collins asymmetries suggest x_T scaling *Implications for TMD evolution?*

The Near-term Future: p + A Collins

Higher precision in 2015 and 2017 will allow more precise comparison!

First $p^{\uparrow} + Au$ run! Should allow for first glimpse of Collins in p + A

→ Explore hadronization

Preliminary 2011 and 2012 Collins asymmetries suggest x_T scaling *Implications for TMD evolution?*

• Spin physics is a fertile field and p+p plays a critical role

- Spin physics is a fertile field and p + p plays a critical role
- Recent STAR measurements shed light on new opportunities
 - First observations of transversity in polarized p + p
 - Possible x_T scaling for Collins and IFF asymmetries
 - First investigation of Sivers effect in weak boson production

- Spin physics is a fertile field and p + p plays a critical role
- Recent STAR measurements shed light on new opportunities
 - First observations of transversity in polarized p + p
 - Possible x_T scaling for Collins and IFF asymmetries
 - First investigation of Sivers effect in weak boson production
- Recent and near-future runs offer even more potential
 - Investigation of Sivers/twist-3 in W, γ , and Drell-Yan
 - Substantially increased precision for Collins and IFF at 200 and 510 GeV
 - First investigation of Collins in p + A

- Spin physics is a fertile field and p + p plays a critical role
- Recent STAR measurements shed light on new opportunities
 - First observations of transversity in polarized p + p
 - Possible x_T scaling for Collins and IFF asymmetries
 - First investigation of Sivers effect in weak boson production
- Recent and near-future runs offer even more potential
 - Investigation of Sivers/twist-3 in W, γ , and Drell-Yan
 - Substantially increased precision for Collins and IFF at 200 and 510 GeV
 - First investigation of Collins in p + A

Stay tuned for more new results from RHIC transverse spin!

Back-up Slides

Drell-Yan at STAR For 500 GeV

Kinematics:

DY
$$e^+e^-$$
 in $2.5 < \eta < 4.0$ $4.0 < M_{e^+e^-} < 9.0 \text{ GeV}/c^2$

After analysis $2.5 < \eta < 4.0$:

Assembled by E.C. Aschenauer

Complementary Channel: A_N direct photon

 \longrightarrow A_N for direct photon production:

- sensitive to sign change, but in TWIST-3 formalism
- not sensitive to TMD evolution
- no sensitivity to sea-quarks; mainly u_v and d_v at high x
- collinear objects but more complicated evolutions than DGLAP
- indirect constraint on Sivers fct.

$$-\int d^{2}k_{\perp} \frac{\left|k_{\perp}^{2}\right|}{M} f_{1T}^{\perp q}(x, k_{\perp}^{2}) |_{SIDIS} = T_{q, F}(x, x)$$

Not a replacement for $A_N(W^{+/-}, Z^0, DY)$ measurement but an important complementary piece in the puzzle

Assembled by E.C. Aschenauer