Ratios of helicity amplitudes for hard exclusive ρ^0 electroproduction on transversely polarized protons at HERMES

Charlotte Van Hulse, on behalf of the HERMES Collaboration University of the Basque Country UPV/EHU, Spain

DIS 2017 Birmingham, UK April 5, 2017

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Target polarization state

• unpolarized target:

nucleon-helicity-non-flip GPDs H, \tilde{H} and $\overline{E}_T=2\tilde{H}_T+E_T$.

transversely polarized target:
 nucleon-helicity-flip GPDs E, Ê and H_T.

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Target polarization state

- unpolarized target:
 nucleon-helicity-non-flip GPDs H, H and ET=2HT+ET.
- transversely polarized target:
 nucleon-helicity-flip GPDs E, Ê and H_T.

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Target polarization state

- unpolarized target: nucleon-helicity-non-flip GPDs H, \tilde{H} and $\overline{E}_T=2\tilde{H}_T+E_T$.
- transversely polarized target:
 nucleon-helicity-flip GPDs E, Ê and H_T.

Exclusive ρ^0 production: angular distribution

 $\vec{e} + p^{\uparrow} \rightarrow e + p + \rho^0$

Exclusive ρ^0 production: angular distribution

 $\vec{e} + p^{\uparrow} \rightarrow e + p + \rho^{0}$ $\rho^{0} \rightarrow \pi^{+} + \pi^{-}$

Exclusive ρ^0 production: angular distribution

Fit angular distribution of decay pions $\mathcal{W}(\Phi,\phi,\Theta,\Psi)$ • Spin Density Matrix Elements (SDMEs)

or

helicity amplitude ratios

 $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$

• Helicity amplitude $F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$

 $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$

• Helicity amplitude $F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$

$$F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$$

- $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$
- Helicity amplitude $F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$

$$F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$$
natural parity
amplitude unnatural parity
amplitude

e. ω, ρ natural parity exchange $J^{P}=0^{+}, 1^{-}, ... \rightarrow GPD H, E, E_{T}$ unnatural parity exchange $J^{P}=0^{-}, 1^{+}, ... \Rightarrow GPD \widetilde{H}, \widetilde{E}$ N(p)N(p')

 $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$

• Helicity amplitude $F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$

$$F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$$
natural parity
amplitude
unnatural parity
amplitude

• Helicity amplitude ratios

 $t_{\lambda_V \lambda_\gamma}^{(n)} = T_{\lambda_V \lambda_\gamma}^{(n)} / T_{0\frac{1}{2}0\frac{1}{2}}$ $u_{\lambda_V \lambda_\gamma}^{(n)} = U_{\lambda_V \lambda_\gamma}^{(n)} / T_{0\frac{1}{2}0\frac{1}{2}}$

 $n = 1 \quad \lambda_N = \lambda'_N$ $n = 2 \quad \lambda_N \neq \lambda'_N$

 $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$

• SDMEs

 $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$

• SDMEs

 $\propto F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} \Sigma^{\alpha}_{\lambda_\gamma \lambda'_\gamma} F^*_{\lambda'_V \lambda'_N \lambda'_\gamma \lambda_N}$

 $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N(\lambda'_N)$

• SDMEs

$$\propto F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} \Sigma^{\alpha}_{\lambda_\gamma \lambda'_\gamma} F^*_{\lambda'_V \lambda'_N \lambda'_\gamma \lambda_N}$$

• SDMEs

• unpolarized target $u_{\lambda_{\gamma}\lambda_{\gamma}'}^{\lambda_{V}\lambda_{V}'}$

 $n_{\lambda_{\gamma}\lambda_{\gamma}'}^{\lambda_{V}\lambda_{V}'}$ and $s_{\lambda_{\gamma}\lambda_{\gamma}'}^{\lambda_{V}\lambda_{V}'}$

- longitudinally polarized target $l_{\lambda_{\gamma}\lambda_{\gamma}'}^{\lambda_{V}\lambda_{V}'}$
- transversely polarized target

 $\vec{e} + p^{\uparrow} \rightarrow e + p + \rho^0$ 0 + . -

$$\rho^0 \to \pi^+ + \pi^-$$

- transversely polarized H target
- longitudinally polarized e[±]

 $\vec{e} + p^{\uparrow} \rightarrow e + \chi + \rho^0$

 $\rho^0 \rightarrow \pi^+ + \pi^-$

- transversely polarized H target
- longitudinally polarized e[±]
- 8741 hard exclusive ρ events

 $\vec{e} + p^{\uparrow} \rightarrow e + \chi + \rho^0$

$$\rho^0 \to \pi^+ + \pi^-$$

- transversely polarized H target
 longitudinally polarized e[±]
- 8741 hard exclusive ρ events

 $3.0 \text{ GeV} \le W \le 6.3 \text{ GeV}$ $1.0 \text{ GeV}^2 \le Q^2 \le 7.0 \text{ GeV}^2$ $0.0 \text{ GeV}^2 \le -t' \le 0.4 \text{ GeV}^2$

 $\vec{e} + p^{\uparrow} \rightarrow e + \chi + \rho^0$

transversely polarized H target
longitudinally polarized e[±]
8741 hard exclusive ρ events

 $3.0 \text{ GeV} \le W \le 6.3 \text{ GeV}$ $1.0 \text{ GeV}^2 \le Q^2 \le 7.0 \text{ GeV}^2$ $0.0 \text{ GeV}^2 \le -t' \le 0.4 \text{ GeV}^2$

Fit angular distribution of decay pions $\mathcal{W}(\Phi, \phi, \Theta, \Psi)$ extract 25 parameters. Use 4x3 cells in (Q²,-t').

Parametrisation of helicity amplitudes

Parametrization	value of parameter	statistical uncertainty	total uncertainty
$\operatorname{Re}\{t_{11}^{(1)}\} = b_1/Q$	$b_1 = 1.145 \mathrm{GeV}$	$0.033~{ m GeV}$	$0.081~{ m GeV}$
$ u_{11}^{(1)} = b_2$	$b_2 = 0.333$	0.016	0.088
$\operatorname{Re}\{u_{11}^{(2)}\} = b_3$	$b_3 = -0.074$	0.036	0.054
$\mathrm{Im}\{u_{11}^{(2)}\} = b_4$	$b_4 = 0.080$	0.022	0.037
$\xi = b_5$	$b_5 = -0.055$	0.027	0.029
$\zeta = b_6$	$b_6 = -0.013$	0.033	0.044
$\operatorname{Im}\{t_{00}^{(2)}\} = b_7$	$b_7 = 0.040$	0.025	0.030
$\operatorname{Re}\{t_{01}^{(1)}\} = b_8\sqrt{-t'}$	$b_8 = 0.471 \text{ GeV}^{-1}$	$0.033 { m ~GeV^{-1}}$	$0.075 { m ~GeV^{-1}}$
$\operatorname{Im}\{t_{01}^{(1)}\} = b_9 \frac{\sqrt{-t'}}{Q}$	$b_9 = 0.307$	0.148	0.354
$\operatorname{Re}\{t_{01}^{(2)}\} = b_{10}$	$b_{10} = -0.074$	0.060	0.080
$\operatorname{Im}\{t_{01}^{(2)}\} = b_{11}$	$b_{11} = -0.067$	0.026	0.036
$\operatorname{Re}\{u_{01}^{(2)}\} = b_{12}$	$b_{12} = 0.032$	0.060	0.072
$\operatorname{Im}\{u_{01}^{(2)}\} = b_{13}$	$b_{13} = 0.030$	0.026	0.033
$\operatorname{Re}\{t_{10}^{(1)}\} = b_{14}\sqrt{-t'}$	$b_{14} = -0.025 \text{ GeV}^{-1}$	$0.034 { m ~GeV^{-1}}$	$0.063 { m ~GeV^{-1}}$
$\operatorname{Im}\{t_{10}^{(1)}\} = b_{15}\sqrt{-t'}$	$b_{15} = 0.080 \text{ GeV}^{-1}$	$0.063 { m GeV}^{-1}$	$0.118 \ {\rm GeV}^{-1}$
$\operatorname{Re}\{t_{10}^{(2)}\} = b_{16}$	$b_{16} = -0.038$	0.026	0.030
$\operatorname{Im}\{t_{10}^{(2)}\} = b_{17}$	$b_{17} = 0.012$	0.018	0.019
$\operatorname{Re}\{u_{10}^{(2)}\} = b_{18}$	$b_{18} = -0.023$	0.030	0.039
$\operatorname{Im}\{u_{10}^{(2)}\} = b_{19}$	$b_{19} = -0.045$	0.018	0.026
$\operatorname{Re}\{t_{1-1}^{(1)}\} = b_{20} \frac{(-t')}{Q}$	$b_{20} = -0.008 \text{ GeV}^{-1}$	$0.096 { m ~GeV^{-1}}$	$0.212 \ {\rm GeV}^{-1}$
$\operatorname{Im}\{t_{1-1}^{(1)}\} = b_{21} \frac{(-t')}{Q}$	$b_{21} = -0.577 \text{ GeV}^{-1}$	$0.196 \ { m GeV}^{-1}$	$0.428 \ { m GeV}^{-1}$
$\operatorname{Re}\{t_{1-1}^{(2)}\} = b_{22}$	$b_{22} = 0.059$	0.036	0.047
$\operatorname{Im}\{t_{1-1}^{(2)}\} = b_{23}$	$b_{23} = 0.020$	0.022	0.026
$\operatorname{Re}\{u_{1-1}^{(2)}\} = b_{24}$	$b_{24} = -0.047$	0.035	0.039
$\operatorname{Im}\{u_{1-1}^{(2)}\} = b_{25}$	$b_{25} = 0.007$	0.022	0.029

arXiv:1702.00345

2% uncertainty beam polarization

already obtained in EPJ C71 (2011) 1609

extracted for first time

• 5 classes of helicity amplitude ratios

already obtained in EPJ C71 (2011) 1609

extracted for first time

- 5 classes of helicity amplitude ratios
- dominant amplitude: natural parity nucleon-helicity non-flip $t_{11}^{(1)}$ (≠0 by >5 σ)
- Significant nucleon-helicity non-flip $\operatorname{Re} t_{01}^{(1)}$ (≠0 by 5 σ)
- unnatural parity nucleon-helicity non-flip $u_{11}^{(1)} \neq 0$ by 4σ

nucleon-helicity flip $\operatorname{Im} t_{01}^{(2)}, \operatorname{Im} u_{11}^{(2)},$ $\operatorname{Im} u_{10}^{(2)} \neq 0$ by 2σ

Comparison with SDMEs: unpolarized target

Comparison with SDMEs: transversely polarised target

- Overall good agreement between two methods
- Newly obtained SDMEs

$$F_{\lambda_{V}\frac{1}{2}\lambda_{\gamma=V}\frac{1}{2}} \propto \sum_{q,g} \mathcal{I}\left[\mathcal{A} \times \left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}}E^{a}\right) + \mathcal{A}' \times \left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}}\tilde{E}^{a}\right)\right)\right]$$
$$F_{\lambda_{V}-\frac{1}{2}\lambda_{\gamma=V}\frac{1}{2}} \propto \sum_{q,g} \mathcal{I}\left[\mathcal{A} \times E^{a} + \mathcal{A}' \times \xi\tilde{E}^{a}\right]$$

$$F_{\lambda} \underbrace{\frac{1}{2}}_{\gamma=V\frac{1}{2}} \propto \sum_{q,g} \mathcal{I} \left[\mathcal{A} \times \left(H^a, \frac{\xi^2}{1-\xi^2} E^a \right) + \mathcal{A}' \times \left(\tilde{H}^a, \frac{\xi^2}{1-\xi^2} \tilde{E}^a \right) \right)$$

$$F_{\lambda_V} \underbrace{\frac{1}{2}}_{\gamma=V\frac{1}{2}} \propto \sum_{q,g} \mathcal{I} \left[\mathcal{A} \times E^a + \mathcal{A}' \times \xi \tilde{E}^a \right]$$

$$F_{\lambda}\underbrace{\left(\frac{1}{2}\right)}_{r=V\frac{1}{2}} \propto \sum_{q,g} \mathcal{I} \left[\mathcal{A} \times \left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}} E^{a} \right) + \mathcal{A}' \times \left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}} \tilde{E}^{a} \right) \right]$$

$$F_{\lambda_{V}}\underbrace{\left(\frac{1}{2}\right)}_{\gamma=V\frac{1}{2}} \propto \sum_{q,g} \mathcal{I} \left[\mathcal{A} \times E^{a} + \mathcal{A}' \times \xi \tilde{E}^{a} \right]$$
natural parity
unnatural parity

model for protons – S. Goloskokov and P. Kroll, Eur. Phys. J. C **50** (2007) 829; **53** (2008) 367, Eur. Phys. J. A **50** (2014) 146

$$F_{\lambda}\underbrace{\left(\frac{1}{2}\lambda\right)}_{Y=V\frac{1}{2}} \propto \sum_{q,g} \mathcal{I} \quad \mathcal{A} \times \left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}}E^{a}\right) + \mathcal{A}' \times \left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}}\tilde{E}^{a}\right)$$

$$F_{\lambda_{V}}\underbrace{\left(\frac{1}{2}\right)}_{Y=V\frac{1}{2}} \propto \sum_{q,g} \mathcal{I} \quad \mathcal{A} \times E^{a} + \mathcal{A}' \times \xi\tilde{E}^{a} \quad \text{natural parity} \text{unnatural parity}$$

Factorization only proven for $\gamma_L^* \to V_L$ Assumed for $\gamma_T^* \to V_T, \gamma_L^* \to V_T$. Other transitions neglected. IR singularities regularised by modified perturbative approach.

model for protons – S. Goloskokov and P. Kroll, Eur. Phys. J. C **50** (2007) 829; **53** (2008) 367, Eur. Phys. J. A **50** (2014) 146

Factorization only proven for $\gamma_L^* \to V_L$ Assumed for $\gamma_T^* \to V_T, \gamma_L^* \to V_T$. Other transitions neglected. IR singularities regularised by modified perturbative approach.

$\pi\omega$ transition form factor extraction: ω SDMEs

$$u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1$$

without pion-pole contribution with pion-pole contribution pion-pole contribution seems to account completely for unnatural-parity exchange

$\pi\omega$ transition form factor extraction: ω SDMEs

$$u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1$$

13

Only magnitude of transition form factor, not sign

without pion-pole contribution with pion-pole contribution pion-pole contribution seems to account completely for unnatural-parity exchange

Sign of $\pi\omega$ transition form factor extraction: ωA_{UT}

without pion-pole contribution with pion-pole contribution: $\pi\omega$ transition FF > 0 with pion-pole contribution: $\pi\omega$ transition FF < 0 Positive $\pi\omega$ transition FF favoured

$\pi\rho^{0}$ transition form factor

$\pi\rho^{0}$ transition form factor

Cross section: 2% effect @ HERMES

• GPD H. Agreement.

• GPD H. Disagreement.

• GPD \tilde{H} + pion pole. Disagreement.

• GPD E. Agreement.

• Only pion pole. Positive form factor.

- GPD E. Agreement.
- GPD \overline{E}_T . Agreement.

GPD H_T.

• Only pion pole. Positive form factor.

Summary

- New: nucleon-helicity-flip ρ^0 helicity amplitude ratios. Small/Consistent with zero.
- Good agreement with direct extraction of SDMEs.
- New SDMEs from ρ^0 helicity amplitude ratios.
- Partial agreement with GK model.
 Positive πρ transition form factor.

Summary

- New: nucleon-helicity-flip ρ^0 helicity amplitude ratios. Small/Consistent with zero.
- Good agreement with direct extraction of SDMEs.
- New SDMEs from ρ^0 helicity amplitude ratios.
- Partial agreement with GK model.
 Positive πρ transition form factor.

