25th International Workshop on Deep-Inelastic Scattering and Related Topics 3-7 April 2017, Birmingham, UK

Small x shadowing from data on coherent J/ ψ photoproduction
J. G. Contreras Czech Technical University

The method: From $\mathrm{Pb}-\mathrm{Pb}$ to rPb
The available data

Photon flux
Extracted $\gamma \mathrm{Pb}$ cross section

Suppression factor

The method: From $\mathrm{Pb}-\mathrm{Pb}$ to rPb

Coherent photoproduction of J / ψ in Pb-Pb collisions
Cross section has two components

Source travels towards detector: photon has Large energy

Source travels away from detector: photon has small energy

Coherent photoproduction of J / ψ in Pb-Pb collisions
Cross section has two components

Source travels towards detector: photon has Large energy

Source travels away from detector: photon has small energy

For measurements at mid rapidity both components are equal

Coherent photoproduction of J / ψ in Pb-Pb collisions
Cross section has two components

Source travels towards detector: photon has Large energy

Source travels away from detector: photon has small energy

For measurements at mid rapidity both components are equal
For measurements at forward rapidities they differ

Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

$$
\frac{d \sigma_{\mathrm{PbPb}}}{d y}=n_{\gamma}\left(y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(y)+n_{\gamma}\left(-y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(-y)
$$

Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

Measured cross section from $\mathrm{Pb}-\mathrm{Pb}$ collisions

$$
\frac{d \sigma_{\mathrm{PbPb}}}{d y}=n_{\gamma}\left(y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(y)+n_{\gamma}\left(-y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(-y)
$$

Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

Measured cross section from Pb-pb collisions

> Photon flux at rapidity $\pm y$ in the impact parameter range (b1,b2) [Calculable within standard EM]

Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

> Photon flux at rapidity ty in the impact parameter range $(b 1, b 2)$ [Calculable within standard EM]

Measured cross section from $\mathrm{Pb}-\mathrm{Pb}$ collisions

Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

Measured cross section from Pb-Pb collisions

> Photon ftux at rapidity ty in the impact parameter range (b1,b2) [Calculable within standard EM]

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at $-y$ simultaneously

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at $-y$ simultaneously

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}(-y)=\left(n_{\gamma}^{P}(y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}-n_{\gamma}^{U}(y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}\right) / F(y) \\
& \sigma_{\gamma \mathrm{Pb}}(y)=\left(n_{\gamma}^{U}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}-n_{\gamma}^{P}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}\right) / F(y)
\end{aligned}
$$

$$
F(y) \equiv n_{\gamma}^{P}(y) n_{\gamma}^{U}(-y)-n_{\gamma}^{U}(y) n_{\gamma}^{P}(-y)
$$

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at $-y$ simultaneously

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}(-y)=\left(n_{\gamma}^{P}(y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}-n_{\gamma}^{U}(y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}\right) / F(y) \\
& \sigma_{\gamma \mathrm{Pb}}(y)=\left(n_{\gamma}^{U}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}-n_{\gamma}^{P}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}\right) / F(y)
\end{aligned}
$$

$$
F(y) \equiv n_{\gamma}^{P}(y) n_{\gamma}^{U}(-y)-n_{\gamma}^{U}(y) n_{\gamma}^{P}(-y)
$$

Use measurements in ultra-peripheral (U) and in peripheral (P) collisions by ALICE to test the method!

The available dala

Measurements of coherent production of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

In UPC collisions:

Measurements at mid and forward rapidikies

Measurements of coherent production of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

ALICE: Phys.Rev.Lett. 116 (2016) 222301

In UPC collisions:

Measuremenks at mid and forward rapidilies

In peripheral collisions:
al forward rapidicicies

Measurements of coherent production of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

$1,0 \pm 0.18$ (stat.) ± 0.26 (syst.) mb

In UPC collisions:

Measurements at mid and forward rapidities

ALICE: Phys.Rev.Lett. 116 (2016) 222301

s9士11(stat.) ± 12 (syst.) μb

Comments about the available data

There are two issues regarding the apptication of the method to these data:

Comments about the available data

There are two issues regarding the application of the method to these data:

The available statistics was small, so that the measurements were performed in wide rapidity bins, which means in a large energy range It is not clear which rapidity to take as representakive:

- Use the centre of the bin
- Use a model to find a wighted mean of rapidity in the bin

Comments about the available data

There are two issues regarding the application of the method to these data:

The available statistics was small, so that the measurements were performed in wide rapidity bins, which means in a large energy range It is not clear which rapidity to take as representative:

- Use the centre of the bin
- Use a model to find a wighted mean of rapidity in the bin

The measurements were performed in slightly different rapidity intervals

- Use a model to find a wighted mean of rapidity in the bin

Comments about the available data

There are two issues regarding the apptication of the method to these data:

The available statistics was small, so that the measurements were performed in wide rapidity bins, which means in a large energy range It is not clear which rapidity to take as representalive:

- Use the centre of the bin
- Use a model to find a wighted mean of rapidity in the bin

The measurements were performed in stightly different rapidity intervals

- Use a model to find a wighted mean of rapidity in the bin

We use this mode, which describes data

Shifting the UPC measurement
This method implicitly assumes that the measurements have been performed at the same rapidity
This is not so for the case of ALICE results, where two different rapidity ranges were used:
UPC: $-3.6<y<-2.6$, peripheral $-4<y<-2.6$

Shifting the UPC measurement

This method impticitly assumes that the measurements have been performed at the same rapidity This is not so for the case of ALICE results, where two different rapidity ranges were used:

UPC: $-3.6<y<-2.6$, peripheral $-4<y<-2.6$
Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the $d \sigma_{\mathrm{PbPb}}^{U} / d y$ at $|y|=3.1$ to that at $|y|=3.25$ for five different models.

Model	$[13]$	$[15]$	$[16]$	$[17]$	$[18]$
Ratio	1.10	1.12	1.12	1.17	1.09

Here, $[13]=$ Starlight, $[15]=\operatorname{RS} 2,[16]=A B,[17]=\operatorname{CSS}$ and $[18]=G M$

Shifting the UPC measurement

This method impticitly assumes that the measurements have been performed at the same rapidity This is not so for the case of ALICE results, where two different rapidity ranges were used:

UPC: $-3.6<y<-2.6$, peripheral $-4<y<-2.6$
Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the $d \sigma_{\mathrm{PbPb}}^{U} / d y$ at $|y|=3.1$ to that at $|y|=3.25$ for five different models.

Model	$[13]$	$[15]$	$[16]$	$[17]$
Ratio	1.10	1.12	1.12	1.17

Here, $[13]=$ Starlight, $[15]=R S 2,[16]=A B,[17]=\operatorname{CSS}$ and $[18]=G M$
This model describes best the measured data. It has been used to shift the UPC measurement and also to compute the weighted mean of rapidity in a range.

Photon flux

Photon flux from a fast parkicle

$$
n\left(k, \vec{x}_{\perp}\right)=\frac{Z^{2} \alpha_{\mathrm{QED}}}{\pi^{2} k}\left|\int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} \frac{F\left(k_{\perp}^{2}+(k / \gamma)^{2}\right.}{k_{\perp}^{2}+(k / \gamma)^{2}} J_{1}\left(x_{\perp} k_{\perp}\right)\right|^{2}
$$

Photon flux from a fast particle

Flux of photons

$$
n\left(k, \vec{x}_{\perp}\right)=\frac{Z^{2} \alpha_{\mathrm{QED}}}{\pi^{2} k}\left|\int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} \frac{F\left(k_{\perp}^{2}+(k / \gamma)^{2}\right.}{k_{\perp}^{2}+(k / \gamma)^{2}} J_{1}\left(x_{\perp} k_{\perp}\right)\right|^{2}
$$

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

$$
F_{p c}(q)=1
$$

```
integral can be done analytically
```

$$
n_{p c}\left(k, \vec{x}_{\perp}\right)=\frac{Z^{2} \alpha_{\mathrm{QED}} k}{\pi^{2} \gamma^{2}} K_{1}^{2}\left(k x_{\perp} / \gamma\right)
$$

Other form factors for Pb

Other form factors for Pb

very similar \rightarrow use convolution of hard sphere and Yukawa potential

Fluxes from Pb: point charge vs hsy form factors

Flux in UPC collisions

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Flux in UPC collisions

the flux at a point

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Flux in UPC collisions

the flux at a point

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of no hadronic interaction

Flux in UPC collisions

Nuclear thickness

$$
T_{A}(\vec{r})=\int d z \rho\left(\sqrt{|\vec{r}|^{2}+z^{2}}\right)
$$

$$
\begin{gathered}
T_{A A}(|\vec{b}|)=\int d^{2} \vec{r} T_{A}(\vec{r}) T_{A}(\vec{r}-\vec{b}) \\
\text { Nuclear overlap }
\end{gathered}
$$

$$
P_{N H}(b)=\exp \left(-T_{A A} \sigma_{N N}\right)
$$

the flux at a point

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of no hadronic interaction

Flux in UPC collisions

Nuclear Chickness

$$
T_{A}(\vec{r})=\int d z \rho\left(\sqrt{|\vec{r}|^{2}+z^{2}}\right)
$$

$$
\begin{gathered}
T_{A A}(|\vec{b}|)=\int d^{2} \vec{r} T_{A}(\vec{r}) T_{A}(\vec{r}-\vec{b}) \\
\text { Nuclear overlap }
\end{gathered}
$$

$$
P_{N H}(b)=\exp \left(-T_{A A} \sigma_{N N}\right)
$$

the flux at a point

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of no hadronic interaction
Average over target surface

Flux in peripheral collisions

Integration limits given by centrality class

$$
n^{P}(y)=k \int_{b_{\min }}^{b_{\max }} d b 2 \pi b\left(1-P_{N H}(b)\right) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of hadronic interaction

Extracted rPb cross section

Coherent photonuclear cross section

```
Using the procedure
outlined previously, when
using the bin centre as the
representative rapidity:
```

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=18.2 \mathrm{GeV}\right) \\
& =5.2 \pm 1.0 \text { (stat.) } \pm 1.0 \text { (syst.) } \mu \mathrm{b}, \\
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma} \mathrm{Pb}=92.4 \mathrm{GeV}\right) \\
& =17.9_{-1.8}^{+2.6} \text { (stat. }+ \text { syst.) } \mu \mathrm{b}, \\
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=469.5 \mathrm{GeV}\right) \\
& =38.1 \pm 15.0 \text { (stat.) }{ }_{-11.3}^{+9.9} \text { (syst.) } \mu \mathrm{b} \text {. }
\end{aligned}
$$

Coherent photonuclear cross section

Using the procedure oullined previously, when using the bin centre as the representakive rapidiky:

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=18.2 \mathrm{GeV}\right) \\
& =5.2 \pm 1.0 \text { (stat.) } \pm 1.0 \text { (syst.) } \mu \mathrm{b}, \\
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=92.4 \mathrm{GeV}\right) \\
& =17.9_{-1.8}^{+2.6} \text { (stat. }+ \text { syst.) } \mu \mathrm{b}, \\
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=469.5 \mathrm{GeV}\right) \\
& =38.1 \pm 15.0 \text { (stat.) }{ }_{-11.3}^{+9.9} \text { (syst.) } \mu \mathrm{b} \text {. }
\end{aligned}
$$

Coherent photonuclear cross section

Using the procedure oullined previously, when using the bin centre as the representakive rapidiky:

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=18.2 \mathrm{GeV}\right) \\
& =5.2 \pm 1.0 \text { (stat.) } \pm 1.0 \text { (syst.) } \mu \mathrm{b}, \\
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=92.4 \mathrm{GeV}\right) \\
& =17.9_{-1.8}^{+2.6} \text { (stat. }+ \text { syst.) } \mu \mathrm{b}, \\
& \sigma_{\gamma \mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=469.5 \mathrm{GeV}\right) \\
& =38.1 \pm 15.0 \text { (stat.) }{ }_{-11.3}^{+9.9} \text { (syst.) } \mu \mathrm{b} \text {. }
\end{aligned}
$$

Suppression factor

Extracting the nuclear suppression factor

Nuclear suppression factor

$$
S_{\mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}\right)=\left(\frac{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{data}}\left(W_{\gamma \mathrm{Pb}}\right)}{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{IA}}\left(W_{\gamma \mathrm{Pb}}\right)}\right)^{1 / 2}
$$

Extracting the nuclear suppression factor
Data from the procedure just described
Nuclear suppression factor

$$
S_{\mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}\right)=\left(\frac{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{data}}\left(W_{\gamma \mathrm{Pb}}\right)}{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{IA}}\left(W_{\gamma \mathrm{Pb}}\right)}\right)^{1 / 2}
$$

Extracting the nuclear suppression factor

Data from the procedure just described
Nuclear suppression factor
$\underbrace{\left.{ }^{\wedge} S_{\mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}\right)=\left(\frac{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{data}}\left(W_{\gamma \mathrm{Pb}}\right)}{\sigma_{\gamma \mathrm{Pb}}^{\mathrm{IA}}\left(W_{\gamma \mathrm{Pb}}\right)}\right)^{1 / 2}\right]}$
Impulse approximation

The nuclear suppression factor

Using the previous formulas

$S_{\mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=18.2 \mathrm{GeV}\right)$
$=0.74 \pm 0.07$ (stat.) ± 0.07 (syst.),
$S_{\mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=92.4 \mathrm{GeV}\right)=0.62_{-0.03}^{+0.04}$ (stat. + syst.)
$S_{\mathrm{Pb}}\left(W_{\gamma \mathrm{Pb}}=469.5 \mathrm{GeV}\right)$
$=0.47 \pm 0.09$ (stat.) ${ }_{-0.07}^{+0.06}$ (syst.).

LTA from: V. Guzey, M. Zhalov, JHEP 10 (2013) 207

Summary and outlook

- Using peripheral and ultra-peripheral data it is possible to extract the photonuclear coherent cross section at different rapidities/centre-of-mass energies/Bjorken-x values
- The main assumption is that one can use the standard formalism for the photon fluxes This is justified, for the current somehow large experimental errors, because
- The shape of the pt distribution for $j /$ psi in the centrality class 70-90 is compatible with the distribution obtained for UPC
- The number of participants in this centrality class is small
- Using the extracted cross sections one can construct a nuclear suppression factor bo allow a directer evaluation of nuclear shadowing and an easy comparison to different models.

