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Coherent photo raclucﬁmv\ oﬂf /0 in Pb-Pb collisions

Cross section has two components

(a) Pb Pb (b) Pb Pb

g ,lp
> Detector > Detector

Source travels towards detector: Source travels away from detector:
photon has large enerqge photon has small energe

For measurements ab mid rapidity both components are equal

For measurements at forward rapidities they differ
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Coherent Pb-Pb cross section

Product of the photon flux and the photonuclear cross section

Photon flux at rapidity 2y in the
impact parameter range (b1,b2)
[Calculable within standard £m]

Measured cross section from Pb-Pb collisions

Photownuclear cross seckion

QCD is here
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Coherent photonuclear production

When the photon flux is knowh, measuring the Pb-Pb cross section in two different
impact parameter ranges at the same rapidity allows one to extract the photonuclear
cross section at y and at -y simultaneously

O.U
ouen(—y) = () EEE — () TEL ) /()

Use measurements in ultra-peripheral (V) and in peripheral (P) collisions b? ALICE
to test the method!




The available data




Measurements of coherent production of I/y in Pb-Pb collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617
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In UPC collisions:

Measurements ot mid and forward rapidities
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In UPC collisions:

Measurements ot mid and forward rapidities

ALICE: Phys.Rev.Lett. 116 (2016) 222301
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Measurements of coherent production of /¢ in Pb-Pb collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C(2013) 73:2617 ALICE: Phys.Rev.Lett. 116 (2016) 222301
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We use this mode, which deseribes data




Shifting the UPC measurement

This method implicitly assumes that the measurements have been Pev»formeci ot the same rapidity

This is not so for the case of ALICE results, where two different rapidity ranges were used:
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Shifting the UPC measurement

This method implicitly assumes that the measurements have been per{ormec:l ot the same rapidity
This is not so for the case of ALICE results, where two different rapidity ranges were used:

Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the dagbpb/dy at |y| = 3.1 to that at
ly| = 3.25 for five different models.

Model
Ratio 1.10 1.12 1.12 1.17 1.09

Here, [13] = Starlight, [15] =RSZ, [16] = AB, [17] = CSS and [1¥] = GM
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Shifting the UPC measurement

This method implicitly assumes that the measurements have been Per{ormeci ot the same rapidity
This is not so for the case of ALICE results, where two different rapidity ranges were used:

Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the dagbpb/dy at |y| = 3.1 to that at
ly| = 3.25 for five different models.

Model
Ratio 1.10 1.12 1.17 1.09

Here, [13] = Starlight, [18] =RSZ, [16] = AB, [17] = CSS and [1¥] = GM

This model describes best the measured data. It has been used to shift the UPC measurement

and also to compute the weighted mean of rapidity in a range.
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Photon fux
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Photon flux from a fast particle
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Photon flux from a fast particle

Flux of photons

(k2 + (k/v)? ;
2+ (e R
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Photon enerqge

Flux of photons

Photon flux from a fast particle

> o F(k1 + (k/7)?
/0 LT (k)

Ji(x k)
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Photon flux from a fast particle
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Distance from centre of
point of emission
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Photon flux from a fast particle

Charge of fast |
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Photon flux from a fast particle

Charge of fast |
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Photon flux from a fast particle

EM Form factor

Charge of fast |
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Photon flux from a fast particle

Point charge
Convolution of Yukawa

and hard spheve

EM Form factor g™
potentials

Charqge of fast p

Fourter Ressel
transform of Woods-
Saxon diskribution i

Distance from centre of
particle to point of emission

Lorentz factor
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Form factor for a point charqge

FPC(Q) =1

tihtegral can be downe anal &atatt ;

_ ZzaQEDk

K1 (kx1 /)
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F(q)

Other form factors for Pb
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F(q)

Other form factors for Pb

_ dmdy . . 1
1 Fth(Q) — Aq3 [SlIl((]RA) — (]RA COS(qRA)] (1 + azqz)
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q (GeV)

Very similar —> use convolution of hard sphere and Yukawa potential
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Fluxes from Pb: point charqge vs hsY form factors

10.06
Very similar fluxes down ko aboubt 9 fm

10.05

Similar behaviour abt other enerqgies

n(k=39.94 GeV) (GeV) |

0.04

0.03

0.02

0.01
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Flux i UPC collisions
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Flux ua UPC collisions

the flux ok a point

U >0 TA rdr 2w | . 4
nY(y) =k | db2rbPnp(b) " [ ddn
0 0 Tr 4 Jo

(k,b+ rcos(¢))

16



Flux ua UPC collisions

the flux ok a point

(k,b+rcos(¢))

Probability of no hadronic interaction
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Flux i UPC collisions

Nuclear Ehickiess

iy | Taa(B) = [ TAITa( -

Nuclear overlay
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Flux i UPC collisions

Nuclear Ehicleness

e Taa(|b]) = / d*FT A (F)Ta(7 — b)

Nuclear overlay
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Probability of no hadronic interaction

Averaqge over tarqet surface
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Flux i peripheral collisions

Integration Limits given by centralilty class
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Exkracted vPb cross section
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Coherent photonuclear cross section

Usting the procedure
oubtlined previously, when
using the bin centre as the

representative rapidiby:

Ufbe(nyPb — 18.2 GeV)
= 5.2 4+ 1.0 (stat.) &+ 1.0 (syst.) ub,

O',Ypb(W,ypb = 92.4 GeV)
— 17.91’%:2 (stat. 4 syst.) ub,

Ofypb(W,Ypb = 469.5 GeV)
— 38.1 £ 15.0 (stat.) T7;%, (syst.) ub.
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Coherent photonuclear cross section

Usting the procedure
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Coherent photonuclear cross section

Usting the procedure

W2, = /snyMeY
outlined prevmustj, whein vPb NN

Wbe (GGV)

—
-
N
—
o

using the bin centre as the

)

@)
representative rapidity: <
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Suppression factor
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Exkracting the nuclear suppression factor

Nuclear suppression factor

1/2
y =
g ipﬁ b (Wopn)
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Exkracting the nuclear suppression factor

Data from the procedure just described

Nuclear suppression factor —

data
*Spr(Wapp) = | =
! O-#%’ b ( W’yP b )
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Exkracting the nuclear suppression factor

Data from the procedure just described

Nuclear suppression factor —
data W
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The nuclear suppression factor

Using the previous formulas

Spb(W,ypb = 18.2 GGV)

— 0.74 & 0.07 (stat.) =

Spb(W,pp = 92.4 GeV) = 0.627903 (stat. + syst.)

Spb(nypb = 469.5 GeV)
— 0.47 +0.09 (stat.)

- 0.07 (syst.),

0.06
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LTA from: V. Guzey, M. Zhalov, JHEP 10 (2013) 207

Thanks to Vadim for the LTA curves



Summary and outloolk

¢ Using peripheral and ultra-peripheral data it is possible to extract the photonuclear
coherent cross section ab different rap&d&&ies/aem&rewoffwmass energies/B jorken-x values

© The main assumption is that one can use the standard formalism for the photon fluxes
This is justified, for the current somehow large experimental errors, because
© The shape of the pt distribution for j/psi in the centrality class 70-90 is ﬂon«\paﬁbt@.
with the distribution obtained for UPC
¢ The number of participants in this centrality class is small

° Using the extracted cross sections one can construct a nuclear suppression factor to allow
a directer evaluation of nuclear shadowing and an easy comparison to different models.
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