Recent STAR Jet results of the high-energy spin physics program at RHIC at BNL

Daniel Olvitt & Bernd Surrow

(On behalf of the STAR Collaboration)
Outline

- Experimental aspects:
 RHIC / STAR

- Theoretical foundation

- Results / Status: Jet production
 - Gluon related studies
 - Cross-section measurements: g
 - Asymmetry measurements: Δg

- Summary and Outlook

XXV International Workshop on DIS and Related Subjects - DIS2017
Birmingham, UK, April 3-7, 2017

Bernd Surrow
Theoretical foundation

- **Probing gluons in ep vs. pp scattering**

\[
d\sigma_{ep} \propto F_2 = \sum_q x e_q^2 f_q(x)
\]

\[
d\sigma_{pp} \propto f_1 \otimes f_2 \otimes \sigma_h \otimes D_f^h
\]

- **Momentum contribution**

\[
f(x) = f^+(x) + f^-(x)
\]

- **Spin contribution**

\[
\Delta f(x) = f^+(x) - f^-(x)
\]

Universality

Factorization
Theoretical foundation

- Proton spin structure using high-energy polarized p+p collisions: Helicity
 - Observable: Gluon polarization (Jet/Hadron production)
 - Double longitudinal single-spin asymmetry A_{LL}

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

Colliding beam helicities!

$$= \frac{\Delta f_1 \otimes \Delta f_2 \otimes \sigma_h \cdot a_{LL} \otimes D_h^h}{f_1 \otimes f_2 \otimes \sigma_h \otimes D^h_f}$$

Δf_1 Δf_2 $a_{LL} = \frac{\Delta \sigma_h}{\sigma_h}$ Input

- Double longitudinal single-spin asymmetry A_{LL}

XXV International Workshop on DIS and Related Subjects - DIS2017
Birmingham, UK, April 3-7, 2017
Bernd Surrow
Experimental aspects - RHIC

- The world’s first polarized proton+proton collider

Diagram showing the experimental setup, including:
- Siberian Snakes
- RHIC pC Polarimeter
- Absolute Polarimeter (H jet)
- PHENIX
- STAR
- Spin Rotators
- Pol. Proton Source
- 200 MeV Polarimeter
- Rf Dipole
- Strong AGS snake
- Helical Partial Siberian Snake
- AGS polarimeters
Polarized p+p collisions

- Production runs at √s=200 / 500 / 510 GeV (long. polarization) in 2009, 2012, 2013 and 2015: Jet and Hadron production (Gluon related studies!)
- Jet results will be shown from Run 9 and Run 12
Experimental aspects - STAR

- Overview
 - Calorimetry system with 2π coverage:
 - BEMC (-1<\(\eta\)<1) and EEMC (1<\(\eta\)<2)
 - TPC: Tracking and particle ID
 (\(|\eta|<1.3\))
 - FGT: Forward GEM Tracker (Run 13)
 (1<\(\eta\)<2)
 - ZDC: Relative
 luminosity and local polarimetry
 - BBC: Relative
 luminosity and Minimum bias trigger

\[\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right) \]
Results / Status - $g / \Delta g(x)$ related studies

- RHIC Gluon studies: Jet-type measurements

Jet

π^* π^0

Δg

Δq

Δq

Δq

Inclusive Jet production (200GeV: Solid line / 500GeV: Dashed line)

$$x_T = \frac{2p_T}{\sqrt{s}} \quad (x \text{ value at } \eta = 0)$$
Results / Status - $g / \Delta g(x)$ related studies

STAR: Mid-rapidity Inclusive Jet cross-section measurement (Run 9) at 200GeV

- Unfolded inclusive jet cross-section using anti-k_T algorithm ($R=0.6$) (Smaller dependence on underlying event (UE) and Pile-up)

 \[
 D_{ij} = \min \left(\frac{1}{k_{T,i}^2}, \frac{1}{k_{T,j}^2} \right) \frac{\Delta R_{ij}^2}{R}
 \]

 \[
 \Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2
 \]

 \[
 D_i = \frac{1}{k_{T,i}^2}
 \]

 \[
 d = \min (\{D_{ij}, D_i\})
 \]

 If $d = D_{ij}$: Combine jet i and jet j

 If $d = D_i$: Define jet i as final jet

- Corrected to particle level for three different pseudo-rapidity regions of $|\eta|<1$, $|\eta|<0.5$ and $0.5<|\eta|<1.0$

- Hadronization and UE corrections evaluated using PYTHIA applied to NLO calculations applied to pure NLO calculations for data comparison

- Comparison to NLO calculations for CT10, NNPDF3.0 and MRST-W2008 with a preference for CT10

X. Li et al. (STAR Collaboration), DIS 2015.
STAR: Mid-rapidity Inclusive Jet A_{LL} measurement (Run 9) at 200GeV

- Run 9 A_{LL} measurement between BB10 and DSSV / Clearly above zero at low p_T
- Larger asymmetry at low p_T suggests larger gluon polarization compared to DSSV
- With global analysis, A_{LL} jet result provides evidence for positive gluon polarization for $x > 0.05$
Results / Status - $g / \Delta g(x)$ related studies

- **Impact on Δg from RHIC data (RHIC Run 9)**
 - Wide spread at low x ($x < 0.05$) of alternative fits consistent within 90% of C.L.

- **DSSV**: Original global analysis incl. first RHIC results (Run 5/6)
- **DSSV*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC updates
- **DSSV - NEW FIT**: Strong impact on $\Delta g(x)$ with RHIC run 9 results: $0.20^{+0.06}_{-0.07}$ 90% C.L. for $0.05 < x$
- **Similar conclusion by independent global analysis of NNPDF**: $0.23^{+0.07}_{-0.07}$ for $0.05 < x < 0.5$

"...better small-x probes are badly needed."

Impact on Δg from RHIC data (RHIC Run 9)

Wide spread at low x ($x < 0.05$) of alternative fits consistent within 90% of C.L.

- **DSSV**: Original global analysis incl. first RHIC results (Run 5/6)
- **DSSV*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC updates
- **DSSV - NEW FIT**: Strong impact on $\Delta g(x)$ with RHIC run 9 results: $0.20^{+0.06}_{-0.07}$ 90% C.L. for $0.05 < x$
- **Similar conclusion by independent global analysis of NNPDF**: $0.23^{+0.07}_{-0.07}$ for $0.05 < x < 0.5$

"...better small-x probes are badly needed."

Results / Status - $g / \Delta g(x)$ related studies

- **STAR: Mid-rapidity Inclusive Jet A_{LL} measurement (Run 12) at 510GeV**

 Graph

 - A_{LL} vs p_T for $|\eta| < 0.9$ and $|\eta| < 1.0$
 - Relative luminosity uncertainty
 - LSS10p, DSSV'14, NNPDF1.1

 Equation

 $$A_{LL} \left(\frac{2p_T}{\sqrt{s}} \right)$$

 Results

 - Probing smaller x-values going from 200GeV to 510GeV in Run 12 and Run 13
 - Preliminary results of A_{LL} at 510GeV (Run 12) well described by global fit results including Run 9 constraint
 - Additional large data sample in Run 13 at 510GeV will reduce A_{LL} uncertainties further

 Notes

 - Additional data set at 200GeV taken in Run 15
 - Projected statistical uncertainties of Run 9 and Run 15 combined at 200GeV in comparison to Run 9 uncertainties

 References

 Z. Chang et al. (STAR Collaboration), SPIN 2014. (Run 12 / 510GeV)

 - More details and comparisons to earlier measurements.

XXV International Workshop on DIS and Related Subjects - DIS2017
Birmingham, UK, April 3-7, 2017
Results / Status - $g / \Delta g(x)$ related studies

- **RHIC Gluon polarization - Correlation Measurements**
 - Correlation measurements provide access to LO partonic kinematics through Di-Jet/Hadron production and Photon-Jet production:

 \[
 x_1 (2) = \frac{1}{\sqrt{s}} \left(p_T^3 e^{\eta_3(-\eta_3)} + p_T^4 e^{\eta_4(-\eta_4)} \right)
 \]
 - Bjorken x-coverage:

![Di-Jet production diagram](diagram.png)

- Current STAR acceptance
- Released STAR results

Di-Jet production

\[
\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}
\]

\[
M = \sqrt{s} \sqrt{x_1 x_2}
\]

XXV International Workshop on DIS and Related Subjects - DIS2017
Birmingham, UK, April 3-7, 2017
Bernd Surrow
Results / Status - $g / \Delta g(x)$ related studies

- **STAR: Mid-rapidity Di-Jet cross-section and A_{LL} measurement (Run 9) at 200GeV**

- **STAR 2009 Di-Jet Cross Section**

 - Data
 - NLO pQCD CT10 + UEH
 - UEH Systematic Uncertainty

 $\int \mathcal{L} dt = 18.6 \text{ pb}^{-1} \pm 8.8\%$

- **Data are well described by NLO pQCD plus hadronization and underlying event corrections**

- **A_{LL} measurements consistent with DSSV2014 and NNPDF1.1 constrained by Run 9 data**

\[
M = \sqrt{s \sqrt{x_1 x_2}} \quad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}
\]

L. Adamczyk et al. (STAR Collaboration), arXiv:1610.06616.
(Submitted for publication, PRD)

XXV International Workshop on DIS and Related Subjects - DIS2017
Birmingham, UK, April 3-7, 2017
STAR: Mid-rapidity Di-Jet A_{LL} measurement (Run 12) at 510GeV

A_{LL} measurements consistent with DSSV2014 and NNPDF1.1 constrained by Run 9 data and consistent with Run 9 di-jet results

S. Ramachandran et al. (STAR Collaboration), DIS 2016. (Run 12 / 510GeV)
Results / Status - g / Δg(x) related studies

- STAR: Forward rapidity Di-Jet A_{LL} measurement (Run 9) at 200GeV

T. Lin et al. (STAR Collaboration), DNP 2016.

- Forward rapidity STAR Di-Jet A_{LL} measurement based on three topological combinations in η:
 - Barrel East (-0.8<η<0) - EEMC (-0.8<η<0)
 - Barrel West (0<η<0.8) - EEMC (-0.8<η<0)
 - EEMC (-0.8<η<0) - EEMC (-0.8<η<0)

- 2009 forward A_{LL} measurement consistent with global fit results constrained by Run 9 A_{LL} data
Results / Status - g / Δg(x) related studies

- Status of Run 13 jet analysis: Inclusive Jet and Di-Jet A_{LL} analysis at 510GeV

 - Run 13 data sample: $\sim 250 \text{pb}^{-1}$ (Run 12: $\sim 80 \text{pb}^{-1}$)

 - Run 13 average beam polarization: $\sim 55\%$ (Run 12: $\sim 55\%$)

 - Run 13 FOM relevant for double-spin asymmetry A_{LL}: $P^4L = 23 \text{pb}^{-1}$ (Run 12: 7.3pb^{-1})

 \Rightarrow FOM Factor ~ 3 improvement compared to Run 12!

- STAR TPC and BEMC calibration (W Run 13 analyses released!): Completed

- Extensive test of both tracking software and jet triggers: Completed

- QA of jet analyses: Finalizing

- MC / Embedding samples Run 13: Initial testing
Future - $g / \Delta g(x)$ related studies

- Impact of new RHIC data and future EIC facility
 - Integral of $\Delta g (Q^2=10\text{GeV}^2)$ (Running integral) from x_{min} to 1 as a function of x_{min}
 \[
 \Delta G(Q^2 = 10 \text{ GeV}^2) = \int_{x_{\text{min}}}^{1} \Delta g(x, Q^2 = 10 \text{ GeV}^2) \, dx
 \]
 - Uncertainties shown on running integral!
 - Important constraint from high-statistics 200GeV data (Run 9 / Published and Run 15) together with 500GeV data (Run 12 and Run 13) and forward rapidity measurements at RHIC prior to EIC - critical for low-x coverage (Di-Jet results not included!)
Future - \(g / \Delta g(x) \) related studies

- Probing smaller \(x \)-values 'badly needed' (DSSV 2014) - Extend di-jet measurements at forward rapidity
- Forward di-jet measurements allow to probe \(\Delta g \) at very low \(x \) values \(\sim 10^{-3} \)
- Forward hadronic calorimeter upgrade required - Upgrade plans at STAR and sPHENIX
Recently published / preliminary results: $g / \Delta g$

- Precise Run 9 A_{LL} inclusive jet measurement: Non-zero Δg of similar magnitude as quark polarization (Published!)
- Run 9 A_{LL} Di-jet measurements open path to constrain the shape of Δg
- Run 12 Inclusive jet and di-jet Run 12 preliminary A_{LL} measurement at 510GeV probe Δg at lower x
- Run 9 Inclusive jet cross-section measurement: Important constraint for unpol. gluon distribution at high x

Upcoming results: $g / \Delta g$

- Large Run 13 data sample: Measurement of Inclusive jet and di-jet A_{LL} at 510GeV probing Δg lower x
- Additional data sample at 200GeV from Run 15 combined with Run 9

Future

- Long 510GeV run in 2017 (Run 17) at transverse spin polarization of about 400pb$^{-1}$: $W A_N /$ Unpol. QCD sea
- Exciting long-term prospects beyond 2020 requiring forward detector upgrade (Cold QCD plan) / Potential of probing gluons at low-x $\sim 10^{-3}$ using forward di-jet measurements!

XXV International Workshop on DIS and Related Subjects - DIS2017
Birmingham, UK, April 3-7, 2017

DOE NP contract: DE-SC0013405

Bernd Surrow