

Contribution ID: 251 Type: not specified

Using Longitudinally Polarized Proton+Proton Collisions To Constrain the Polarized Gluon Distribution Through Di-jet Measurements at $\sqrt{s}=510$ GeV at STAR

Wednesday, 5 April 2017 17:20 (20 minutes)

The production of jets from polarized p+p collisions at STAR is dominated by quark-gluon and gluon-gluon scattering. The di-jet double spin asymmetry (A_{LL}) is sensitive to the polarized gluon distribution (ΔG) . Dijets are also advantageous because the parton momentum fraction, x, of initial partons may be reconstructed to first order from the final state measurements. Both jet (PRL 115,092002) and di-jet (arXiv:1610.06616) A_{LL} measurements at $\sqrt{s}=200$ GeV have helped to constrain ΔG in the range 0.05 < x < 0.3. In 2012, data were collected at $\sqrt{s}=510$ GeV in order to probe lower values of x, these data are consistent with the $\sqrt{s}=200$ GeV results in the overlapping x_T region. Jet and di-jet preliminary A_{LL} results have been released and will soon be incorporated into theoretical fits. In 2013, high luminosity data, with an estimated 250 pb $^{-1}$ of integrated luminosity were collected at $\sqrt{s}=510$ GeV. These data have a figure of merit ≈ 3 times that of the 2012 data. An update on the di-jet A_{LL} measurement will be presented using polarized p+p data collected at STAR during 2013.

Primary author: SURROW, Bernd (STAR)

Presenter: SURROW, Bernd (STAR)

Session Classification: WG6 Spin and 3D Structure

Track Classification: WG6) Spin and 3D Structure