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The Top Quark and its Mass

< Heaviest fundamental particle in SM W+
e Possible to study bare-quark properties Vi
 Uniquely strong coupling to Higgs field {

* Special role in electroweak symmetry breaking b

e New physics may couple preferably to top quarks
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© Top-Quark Mass In Calculations
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 Beyond LO: self-energy corrections
* Top-quark mass is renormalisation scheme dependent
» pole mass: my pore —> O(Aqcep) ambiguity (cn diverge ~nl)
» running masses m(y), e.8. MSbar mass: ms(4)
» ...any many others (see G. Corcella’s talk)

= “ywell-defined” m; for calculations




I@ Top-Quark Mass in Monte-Carlo Simulation

e Initial protons )
» Compound objects —— ~
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» Described by PDFs e
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I@ Relation between MC- and well-defined Mass

 Direct top-quark mass measurements

» Using final states from MC simulation (models)

1INt MmC

» Measure MC parameter mg, (MC) (in principle depends on generator)

Mmimc=172.44+0.49 GeV

CMS Collaboration
PRD 93 (2016) 072004

Hoang, Steward, NPPS 185 (2008)
Butenschoen et al., PRL 117 (2016) 232001

o Exact interpretation of m:wmc in terms of well-defined my

» Uncertainty =1 GeV (pp), studies to reduce uncertainty ongoing

(see G. Corcellas talk)

Buckley et al, Phys. Rept. 504 (2011)

» For measurements: often assumed ms pole - Mt mc = 1 GeV
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Determine well-defined Mass directly
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e Predicted production cross section depends significantly on m;

e NNNLO predictions using well-defined m: (here pole mass) available
Czakon et al. PRL 110 (2013) 252004

e Measure oy precisely (in ey channel)

e Dependence of measurement on my(MC) mild
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@ Pole-Mass Results

EPJC 76 (2016) 642
ATLAS

mPo® = 172.972% Gev

e Combine result from 7 and 8 TeV

= Most precise single pole mass determination
» (Higher precision can be reached in global PDF fits O(1 GeV)) JHEPOS8 (2016) 029

arXiv:1701.05838
CMS M [GeV ]
e Uncertainties from measured and predicted o NNPDF3.0  173.871%
contribute equally MMHT2014 174.1 i-%g
e Main difference between ATLAS and CMS: CT14 174 3+2:1
CMS uses more recent PDF sets. =22

e Working on a combination of results for o from ATLAS and CMS
» significant gain in precision expected [1]
» paper will include subsequent pole-mass extraction (recent PDF sets)

[1] JK “Update on t-tbar production results", LHCtopWG open meeting 17.5.2016
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@ MC Mass in Measurements

e Dependence of experimental result
is evaluated using MC mass

e “[...]an additional uncertainty Ams: in
the obtained cross section dependence is
introduced. It is evaluated by shifting

the measured dependence by 1 GeV [...]”
JHEPO08 (2016) 029

e Still: quantitative assumption on relation
between MC mass and pole mass
(or other well-defined mass) needed

e Assumption can be avoided
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» Use existing measurements of MC mass — precise but easily inconsistent

(which MC, uncertainties and correlations, ...)

» Measure MC mass simultaneously
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Mitigate dependence on MC mass

e Assume all dependencies to be unknown

e Absorb MC mass dependence in

uncertainty on oy through simultaneous fit
» Shape of e.g. mip: MC masss
» Normalisation: O

= Mleasurement of oy and MC mass

= mproved physics interpretation of
measured O(1at)

» Only assumption some weak qualitative relation
between MC mass and well-defined mass

= Determine pole or MS mass (or any other)
from direct comparison

= No assumptions on t_he relation between
MC mass and pole/MS mass needed

= Difference can be measured
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@ MSbar mass scheme

e Study on extracted top-quark mass § 175 == NNLO
N -
» Consider measured oy independent of my £ 170 L=
» Extract m: by comparison with predicted o (1ms) I
165 —a— . =NLO
160
=Using mt improves perturbative convergence 155 *Lo
150
my m,
JK,KL,SM, PRL 116 (2016) 162001

e Conversion between MS and pole mass known up to 4-loop QCD

» Indicates the size of higher-order corrections to ms poe
beyond NNLO (2-loop): about 250 MeV Marquard et al., PRL 114 (2015) 142002

i mwm e (k) = mpS () _1+nilcn my‘;(m 300




@ Resulting m;s

Well-defined my;:

e Without assuming any relation
to IIlt(MC)
e Higher precision than accounting MMET014 0118 165411 1.4 -
for slope (CMS/ATLAS/Tevatron) ' Ak 1743%3 175,347
« Consistently lower for ABM CT14 0.118  165.5+)3 1744418  175.4+)7

as(M;) m, [GeV] m! [GeV] ml‘ [GeV]
ABM12 0.113  158.4+]2 166.6+]5  168.0+)3
NNPDF3.0 0.118 1652+  174.0+14  175.1£12

e About 1 GeV difference between JK,KL,SM, PRL 116 (2016) 162001
directly measured and converted pole mass
— sizeable corrections beyond NNLO

my - M (MC):
A, [GeV] Ap [GeV] An° [GeV] | e Directly measurable

ABM12 —-14.3+3% —-6.1+5] —-4.74+33 e First consistent experimental

NNPDF3.0 ~7.6+!3 1.3£18 24413 calibration

MMHT2014 ~7.3413 1.5+16 2.6+13 e Precision ~& GeV

CT14 ~7.2+417 1.6+19 27418 e Consistent with assumption of
ms - my(MC)=1 GeV for most PDF
sets
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I@ Application: Inclusive Cross Sections:

13 TeV

otrategy
e Measure ot in 1+jets channel

» Simultaneous nuisance parameter fit of cross

sections and MC mass (mp)

e Incorporate likelihood for NNLO prediction

» Model scale variations with box prior

e Determine m;y from joint likelihood
measured ® predicted

mi(pole) = 173.7 +2.4 - 3.7 GeV
(CT14, as=0.118)

2 Aln(L)

0;
arXiv:1701.06228 Top quark pole mass [GeV]

2.3 b7 (13 TeV)
- —— observed
- ....... expected
: 795% CL
3 68% CL
L1 - - L
168 170 172 174 176 178

Source Am; [GeV]

Uncertainties from the fit in the fiducial region +2.1 /—2.0

Extrapolation to the full phase space +0.7 /—1.1¢— 2x larger than for dilepton measurement
Beam energy +0.5/-0.8 (jets in final state)

}“R/#F and PDF'HXS +0.9 /—11

Total +24 /27
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Extend to Differential Distributions

- bin-wise
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e Residual dependence on MC masss can be absorbed while unfolding
similarly as for the inclusive cross section JK,KL,SM, PRL 116 (2016) 162001

e Measurement of do/dX (maf)

e Could be used for simultaneous parameter extraction through direct
comparison: ag, pole mass / MS mass, ...

e Will likely provide higher precision
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I @m Summary

e Important to clearly define which top-quark mass is measured

e More and more precise direct pole-mass measurements
» Using inclusive and differential cross sections

» @ NNLO: down to ~2 GeV uncertainty in a single measurement

e Consistent way of mitigating mi(MC) dependence in (cross-section) measurements
» Improves physics interpretation of measured quantity
» Allows to extract any mass in a well-defined scheme from direct comparison
» Offers possibility to measure relation between m: and my(MC) fully consistently

» Precision is likely to increase when extending to differential measurements




