Experimental Calibration of the Top-Quark Monte-Carlo Mass

Jan Kieseler¹, Katerina Lipka², Sven Moch³

04.04.2017

- 1) CERN
- 2) DESY
- 3) Universität Hamburg

The Top Quark and its Mass

⇔ Heaviest fundamental particle in SM

- Possible to study bare-quark properties
- Uniquely strong coupling to Higgs field
- Special role in electroweak symmetry breaking
- New physics may couple preferably to top quarks

• Important role in EWK fits

- EWK vacuum stability critically depends on
 - Higgs-boson mass
 - Top-quark (pole) mass

Top-Quark Mass In Calculations

$$m_H = 125.09 \pm 0.24 \, \mathrm{GeV}$$

ATLAS, CMS Collaborations, PRL 114 (2015) 191803

- Beyond LO: self-energy corrections
- Top-quark mass is renormalisation scheme dependent
 - ▶ pole mass: $\mathbf{m}_{t,pole} \rightarrow O(\Lambda_{QCD})$ ambiguity (c_n diverge ~ n!)
 - running masses $m(\mu)$, e.g. MSbar mass: $\bar{m}_t(\mu)$
 - ...any many others (see G. Corcella's talk)
- → "well-defined" m_t for calculations

Top-Quark Mass in Monte-Carlo Simulation

- Initial protons
 - Compound objects
 - Described by PDFs
- Hard interaction
 - ▶ Calculable in pQCD

• Hard decay

Parton shower

Hadronization

production

Decay to final state

- Based on heuristic models and approximations with parameters tuned to data
- Also top-quark mass can be tuned to describe data
- → Mass measurement

visible signature

Relation between MC- and well-defined Mass

- Direct top-quark mass measurements
 - Using final states from MC simulation (models)
 - Measure MC parameter $m_{t,}(MC)$ (in principle depends on generator)

Hoang, Steward, NPPS 185 (2008) Butenschoen et al., PRL 117 (2016) 232001

- Exact interpretation of $m_{t,MC}$ in terms of well-defined m_t
 - Uncertainty ≈1 GeV (pp), studies to reduce uncertainty ongoing (see G. Corcellas talk)
 Buckley et al, Phys. Rept. 504 (2011)
 - ▶ For measurements: often assumed $m_{t,pole}$ $m_{t,MC} \approx 1 \text{ GeV}$

Determine well-defined Mass directly

- Predicted production cross section depends significantly on m_t
- NNLO predictions using well-defined m_t (here pole mass) available
 Czakon et al. PRL 110 (2013) 252004
- Measure σ_{tt} precisely (in eµ channel)
- Dependence of measurement on $m_t(MC)$ mild

Pole-Mass Results

- Combine result from 7 and 8 TeV
- →Most precise single pole mass determination
 - (Higher precision can be reached in global PDF fits O(1 GeV)) arXiv:1701.05838
- ullet Uncertainties from measured and predicted σ_{tt} contribute equally
- Main difference between ATLAS and CMS: CMS uses more recent PDF sets.

ATLAS

 $m_t^{\text{pole}} = 172.9_{-2.6}^{+2.5} \text{ GeV}$

JHEP08 (2016) 029

CMS	m _t [GeV]
NNPDF3.0	$173.8^{+1.7}_{-1.8}$
MMHT2014	$174.1^{+1.8}_{-2.0}$
CT14	$174.3^{+2.1}_{-2.2}$

- \bullet Working on a combination of results for σ_{tt} from ATLAS and CMS
 - ▶ significant gain in precision expected [1]
 - paper will include subsequent pole-mass extraction (recent PDF sets)

[1] JK "Update on t-tbar production results", LHCtopWG open meeting 17.5.2016

MC Mass in Measurements

- Dependence of experimental result is evaluated using MC mass
- "[...]an additional uncertainty $\Delta m_{t\pm}$ in the obtained cross section dependence is introduced. It is evaluated by shifting the measured dependence by ±1 GeV [...]" JHEP08 (2016) 029
- Still: <u>quantitative</u> assumption on relation between MC mass and pole mass (or other well-defined mass) needed

- Assumption can be avoided
 - Use existing measurements of MC mass → precise but easily inconsistent (which MC, uncertainties and correlations, ...)
 - ▶ Measure MC mass simultaneously

Mitigate dependence on MC mass

- Assume all dependencies to be unknown
- Absorb MC mass dependence in uncertainty on σ_{tt} through simultaneous fit
 - ▶ Shape of e.g. m_{lb}: MC mass
 - Normalisation: σ_{tt}
 - \rightarrow Measurement of σ_{tt} and MC mass

- ▶ Only assumption some <u>weak</u> qualitative relation between MC mass and well-defined mass
- →Determine pole or MS mass (or any other) from direct comparison
- $ightharpoonup No assumptions on the relation between MC mass and pole/<math>\overline{MS}$ mass needed
- →Difference can be measured

MSbar mass scheme

- Study on extracted top-quark mass
 - \blacktriangleright Consider measured σ_{tt} independent of m_t
 - \blacktriangleright Extract m_t by comparison with predicted σ_{tt} (m_t)
- ightharpoonupUsing \bar{m}_t improves perturbative convergence

- ullet Conversion between $\overline{
 m MS}$ and pole mass known up to 4-loop QCD
 - Indicates the size of higher-order corrections to $m_{t,pole}$ beyond NNLO (2-loop): about 250 MeV

Marquard et al., PRL 114 (2015) 142002

$$m_t^{\text{pole}}(k) = m_t^{\overline{\text{MS}}}(\mu) \left[1 + \sum_{n=1}^k c_n \left(\frac{\mu}{m_t^{\overline{\text{MS}}}(\mu)} \right) \alpha_S^n(\mu) \right]$$

Resulting m_t

Well-defined m_t:

- \bullet Without assuming any relation to $m_t(MC)$
- Higher precision than accounting for slope (CMS/ATLAS/Tevatron)
- Consistently lower for ABM
- About 1 GeV difference between directly measured and converted pole mass
 - → sizeable corrections beyond NNLO

	$\alpha_S(M_Z)$	\bar{m}_t [GeV]	m_t^p [GeV]	$m_t^{p,c}$ [GeV]
ABM12	0.113	$158.4\pm_{1.9}^{1.2}$	$166.6\pm_{1.9}^{1.6}$	$168.0\pm_{2.1}^{1.3}$
NNPDF3.0	0.118	$165.2\pm^{1.1}_{1.7}$	$174.0\pm^{1.4}_{1.7}$	$175.1\pm_{1.9}^{1.2}$
MMHT2014	0.118	$165.4\pm_{1.9}^{1.1}$	$174.3\pm^{1.4}_{1.8}$	$175.3\pm_{2.1}^{1.3}$
CT14	0.118	$165.5\pm^{1.5}_{2.0}$	$174.4\pm^{1.8}_{2.0}$	$175.4\pm^{1.7}_{2.2}$

JK,KL,SM, PRL 116 (2016) 162001

	$\bar{\Delta}_m$ [GeV]	Δ_m^p [GeV]	$\Delta_m^{p,c}$ [GeV]
ABM12	$-14.3\pm^{1.4}_{2.0}$	$-6.1\pm^{1.7}_{2.0}$	$-4.7\pm^{1.5}_{2.2}$
NNPDF3.0	$-7.6\pm^{1.3}_{1.9}$	$1.3\pm^{1.6}_{1.9}$	$2.4\pm^{1.5}_{2.0}$
MMHT2014	$-7.3\pm^{1.3}_{2.1}$	$1.5\pm^{1.6}_{2.0}$	$2.6\pm_{2.2}^{1.5}$
CT14	$-7.2\pm^{1.7}_{2.1}$	$1.6\pm^{1.9}_{2.1}$	$2.7\pm^{1.8}_{2.3}$

m_t - $m_t(MC)$:

- Directly measurable
- First consistent experimental calibration
- Precision ~2 GeV
- Consistent with assumption of m_t $m_t(MC) \approx 1$ GeV for most PDF sets

Application: Inclusive Cross Sections: 13 TeV

Strategy

- Measure σ_{tt} in l+jets channel
 - lacktriangleright Simultaneous nuisance parameter fit of cross sections and MC mass (m_{lb})
- Incorporate likelihood for NNLO prediction
 - ▶ Model scale variations with box prior
- $\label{eq:continuous_problem} \begin{array}{l} \bullet \ \ Determine \ m_t \ from \ joint \ likelihood \\ measured \otimes predicted \end{array}$

$$m_t(pole) = 172.7 + 2.4 - 2.7 \text{ GeV}$$

(CT14, $\alpha_s = 0.118$)

Source	$\Delta m_{\rm t} [{ m GeV}]$
Uncertainties from the fit in the fiducial region	+2.1 /-2.0
Extrapolation to the full phase space	+0.7 /−1.1 ◀
Beam energy	+0.5 / -0.8
$\mu_{\rm R}/\mu_{\rm F}$ and PDF+ $\alpha_{\rm S}$	+0.9 / -1.1
Total	+2.4 /-2.7

2x larger than for dilepton measurement (jets in final state)

Extend to Differential Distributions

- Residual dependence on MC mass can be absorbed while unfolding similarly as for the inclusive cross section

 JK,KL,SM, PRL 116 (2016) 162001
- Measurement of dσ/dX (mt)
- Could be used for simultaneous parameter extraction through direct comparison: a_{S_i} pole mass / \overline{MS} mass, ...
- Will likely provide higher precision

Summary

• Important to clearly define which top-quark mass is measured

- More and more precise direct pole-mass measurements
 - Using inclusive and differential cross sections
 - ▶ @ NNLO: down to ~2 GeV uncertainty in a single measurement
- ullet Consistent way of mitigating $m_t(MC)$ dependence in (cross-section) measurements
 - Improves physics interpretation of measured quantity
 - ▶ Allows to extract any mass in a well-defined scheme from direct comparison
 - lacktriangledown Offers possibility to measure relation between m_t and $m_t(MC)$ fully consistently
 - ▶ Precision is likely to increase when extending to differential measurements